- •Основные понятия термодинамики: система, параметры, состояние, процесс (определение, классификация, примеры).
- •2.Внутренняя энергия. Энтальпия. Теплота и работа – две формы передачи энергии.
- •Первое начало термодинамики: формулировки, применение к биосистемам.
- •Закон Гесса: формулировка, следствия, практическое значение
- •Второе начало термодинамики: формулировки Клаузиуса и Томсона. Свободная и связанная энергия.
- •Энтальпийный и энтропийный факторы, энергия Гиббса. Уравнение Гиббса. g как критерий самопроизвольного протекания изобарно-изотермических процессов
- •V Цепные реакции:
- •VI Сопряженные реакции:
- •Зависимость скорости реакции от концентрации реагирующих веществ (закон действующих масс). Константа скорости.
- •Молекулярность и порядок реакции. Определение молекулярности сложной реакции. Кинетические уравнения реакций нулевого, первого и второго порядков.
- •Зависимость скорости реакции от температуры. Правило Вант-Гоффа, особенности температурного коэффициента для биохимических процессов. Уравнение Аррениуса. Энергия активации.
- •Химическое равновесие. Константа химического равновесия. Уравнение изотермы химической реакции.
- •Прогнозирование смещения химического равновесия. Принцип Ле-Шателье.
- •Коллигативные свойства разбавленных растворов неэлектролитов. Закон Рауля: формулировки, расчетные формулы.
- •15. Следствие из Закона Раулы: понижение температуры замерзания, повышение температуры кипения р-ров
- •16.Осмос. Осмотическое давление. Закон Вант-Гоффа: вывод, формулировка
- •17. Осмотические св-ва растворов электролитов. Изотонический коэфициент
- •18. Гипо и гипер изотонические р-ры. Понятие об изоосмии. Осмоляльность и осмолярность биологических жидкостей
- •19. Роль осмоса в биологич системах пазмолиз и цитолих. Зависимость степени гемолиза эритроцитов от конц р-ра nacl
- •20.Буферные системы: определение, состав, классификация. Уравнения Гендерсона-Гассельбаха для расчета рН буферных систем.
- •21.Механизм действия бс при добавлении кислоты и щелочи (на примере ацетатной, аммиачной и белковой бс), разбавлении водой.
- •3.Амфолитные бс
- •3.Разбавление водой.
- •22. Буферная емкость и факторы на нее влияющие. Зона буферного действия.
- •24. Понятие о кислотно-основном состоянии организма: определение, значение для процессов жизнедеятельности, щелочной резерв крови
- •25. Координационная теория Вернера. Структура комплексных соединений
- •26. Номенклатура комплексных соединений.
- •27. Константы нестойкости и устойчивости.
- •29. Метало лигандный гомеостаз и причины его нарушения
- •30. Дисперсные системы: определение, классификация (по степени дисперсности, по агрегатному состоянию фаз), примеры.
- •1.Физические
- •32. Методы очистки коллоидных систем: диализ, электродиализ, ультрафильтрация. Физико-химические принципы функционирования искусственной почки.
- •33. Устойчивость дисперсных систем. Виды устойчивости коллоидных растворов: кинетическая (седиментационная), агрегативная и конденсационная. Факторы устойчивости.
- •34. Коагуляция. Виды коагуляции: скрытая и явная, медленная и быстрая. Порог коагуляции, пороговая концентрация. Биологическое значение коагуляции.
- •35.Правило Шульце-Гарди. Механизм коагулирующего действия электролитов.
- •36. Коллоидная защита и пептизация, значение этих явлений в медицине.
- •37.Свойства растворов вмс. Особенности растворения вмс как следствие их структуры. Форма макромолекул.
- •38. Механизм набухания и растворения вмс. Зависимость набухания от различных факторов.
- •39.Полиэлектролиты. Изоэлектрическая точка и методы ее определения.
- •40. Застудневание растворов вмс: механизм, факторы процесса. Свойства студней: тиксотропия и синерезис.
- •42. Концентрирование биогенных элементов живыми системами.
- •43. Классификация биогенных элементов по их содержанию в организме (макро-, олиго-, микробиогенные элементы) и по функциональной роли (органогены, элементы электролитного фона, микроэлементы).
- •I Классификация бэ по содержанию:
- •II Классификация бэ по функциональной роли:
- •44. Эссенциальные микроэлементы (Fe, Co, Cr, Mn, Zn, Cu, Mo): содержание в организме, биологическая роль.
- •Часть II. Теория. Биоорганическая химия
- •Нуклеофильная атака галагенониевого иона (быстро)
- •I стадия
- •II стадия
- •51. Двухатомные фенолы: гидрохинон,оезлрцин, пирокатехин.Окисление двухатомных фенолов.Система гидрохинон-хинон.Фенолы как антиоксиданты(ловушки свободных радикалов)
- •52. Двухосновные карбоновые кислоты: щавеливая малоовя, янтарная. Глутаровая. Фумаровая. Прекращение янтарной кислоты в фкмаровую как пример биологической р-ции дегидрирования
- •53. Аминоспирты 2-аминоэтанол(коламин), холин, ацетилхолин. Аминофенолы: дофамин, норадреналин,адренлин.Аминотиолы ( 2 аминоэтантиол). Понятие о биологич-ой роли
- •55.Одноосновные (молочная,β и ɣ-гидросимаслянная), двухосновные( яблючная, винная), трехосновная(лимонная) гидроксикислоты. Образование лимонной кислоты в рез-теадольного присоединения
- •57. Гетероцикы с одним гетероатомом. Пиррол, индол, пиридин хинолин строение, кисотно основные св-ва. Понятие о тетрапиррольных соединениях-порфин, протопорфин, гем
- •58. Биологически важные производные пиридина – никотинамид, пиридоксаль, производные изоникотиновой кислоты.
- •59.Гетероциклы с несколькими гетероатомами. Пиразол, имидазол, тиазол, пиразин, пиримидин, пурин: строение, кислотно-основные свойства.
- •63.Перикисное окисление липидов.
- •65.Моносахариды. Альдозы, кетозы. Пентозы, гексозы. Ксилоза, рибоза, 2-дезоксирибоза, фруктоза, строение, цикло-оксо-таутомерия.
- •66.Дисахариды: стрение, типы гликозидной связи, образование, гидролиз, цикло-оксо-таутомерия. Востанавливающие(мальтоза, лактоза, целлобиоза), невостанавливающие(сахароза), дисахариды.
- •67. Гомополисахариды: крахмал (амилоза, амилопектин), гликоген, декстран, целлюлоза. Пектиновые вещества. Понятие о гетерополисахаридах.
- •1. Классификация
- •1.1. По положению аминогруппы
- •1.2. По количеству карбокси- и аминогрупп
- •1.3 Классификация по встречаемости в белках
- •1.4. По пищевой ценности для человека
- •2.2. Рациональная
- •Химические свойства аминокислот
- •70. Пептиды. Электронное и пространственное строение пептидной связи. Кислотный и щелочной гидролиз пептидов.
Основные понятия термодинамики: система, параметры, состояние, процесс (определение, классификация, примеры).
Термодинамическая система- это любой реальный объект, выделяемый из окружающей среды с целью изучения процессов обмена в-вом и энергией между составляющими его частями, а так же между ним и окружающей средой с помощью термодинамических методов
Классификация ТС
Открытые обмениваются с ОС как в-вом, так и энергией(организм, открытый сосуд с кипящей водой)
Закрытый –обменивается с ОС только энергией в форме теплоты или работы (газ в закрытом балоне)
Изолированные- не обмениваются ни в-вом, ни энергии. В природа абсолютно изолир-х нет
По наличию пов-ти раздела внутри ТС
Гомогенные – пов-ть раздела отсутствует, все компоненты находятся в одой фазе, все физ и хим св-ва в любой части объема одинаковы (смесь газов)
Гетерогенные-содержится пов-ть раздела, отделяющие части системы(фазы) различны по св-вам (кровь)
Параметры –величины, определяющие состояния ТС
По возможности непосредственного измерения
Основные параметры-параметры, которые можно измерить с помощью соотв-х приборов (m, V, C, плотность, объем)
Функции состояния - внутренняя энергия E(U); энтальпия (H); энтропия (S); энергия Гиббса (G); свободная энергия или энергия Гельмгольца
Можно определить изменение значений функции состояния
∆X(X2-X1), ГДЕ Х - U, H, S, G, H
Термодинамическое состояние-совокупность значений некоторого числа физ. величин, характеризующих все физ и хм св-ва системы
Виды состояний:
Неравновесное - параметры меняются самопроизвольно (стакан с горячей водой)
Равновесное -параметры не меняются без внешних воздействий
Стационарное=постоянство параметров за счет внешних параметров (присуще жив организмам)
Процесс-переход системы из одного сост-я в др, сопровождается изменениями термодинамических параметров.
Классификация- по постоянству параметров:
А) изохорные (v=const)
B) Изобарные (давление- const)
C) изотермич-е
По знаку тепл эффекта: экзотермич-е и эндотермические
По затрате Энергии: самопроизвол, несамопроизвол
По хар-ку протекания: обратимые и необратимые
2.Внутренняя энергия. Энтальпия. Теплота и работа – две формы передачи энергии.
Внутренняя энергия (U)- зависящая от термодинамического состояния системы, равна сумме всех видов энергии частей системы, за исключением кинетической и потенциальной энергии как целого.
[U]=Дж
Зависит от :
Характера движения и взаимодействия частиц в системе
От природы составляющих систему в-в
От массы
От внешних условий- темп, давл, объема
Энтальпия-энергия, которой обладает система при постоянном давлении
[H]=Дж
Связь энтальпии с внутр энергией ∆H=∆U+A, A=p*∆V
=>∆H=∆U+ p*∆V
А-работа, совершаемая против дей-я внеш сил, р-давление
Стандартная энтальпия-это изменение 1 моля в-ва в стандартных условиях(Т=298К, р=101,325 кПа)
[∆H 0298]=кДж/моль
Расчет изменения энтальпии в процессе хим р-ции
∆H 0298(р-реакции)= ∑n∆H 0298(обр-образования)- ∑n∆H 0298(обрахования исзодных в-в)
Теплота и работа-не форма энергии, а способ ее передачи. Они не являются термическими состояниями, следовательно их величины зависит от пути процесса в отличие от U,H.G,S,F
[Q]=[A]=Дж
