- •Министерство образования и науки Республики Казахстан ргп пхв «Евразийский национальный университет им. Л.Н. Гумилева» Факультет___Механико-математический____
- •Учебно-методический комплекс дисциплины
- •Астана 2016 Содержание учебно-методического комплекса дисциплины (умкд)
- •2. Программа дисциплины (Syllabus)
- •Данные о дисциплине
- •Распределение часов по учебному плану
- •Пререквизиты и постреквизиты учебной дисциплины
- •Характеристика учебной дисциплины
- •Учебно-методическая обеспеченности дисциплины
- •7. Контроль и оценка результатов обучения
- •Знания, умения и навыки студентов оцениваются по следующей системе
- •8. Политика учебной дисциплины
- •3. Глоссарий по дисциплине
- •4. Тезисы лекций по темам учебной дисциплины и методические указания по изучению лекционного курса
- •1. Методология механики
- •2. Основные методологические принципы изучения истории механики
- •1. Предмет и задачи истории механики
- •2. Основные закономерности развития механики
- •3.Периодизация истории механики
- •1. Основные понятия методологии механического познания.
- •2. Социально исторические, культурные, производственно-технические предпосылки становления классической механики.
- •1. Основные достижения классической механики 17 века
- •2. Становление классической механики как фактор социокультурной динамики 16-17 вв.
- •Лекция 5. Механика и методология Архимеда
- •1. Архимед-физик (механик)
- •2. Центр тяжести
- •3. Закон рычага
- •4. Механическое открытие
- •5. Гидростатика
- •6. Определение удельного веса
- •7. Оптика
- •8. Влияние работ Архимеда на развитие механики
- •1. Движение - одна из основных проблем естествознания
- •2. Механика Галилея как основа механики Ньютона
- •3. Механика Ньютона
- •4. Ньютоновская методология исследований
- •Что мы понимаем под пространством?
- •Основные свойства пространства.
- •Проблемы в представлениях о пространстве.
- •4. Способы измерения времени.
- •5. Основные свойства времени.
- •6. Проблемы в представлениях о времени.
- •Лекция 8. Зарождение учения о движении
- •1. Созерцательный характер натурфилософии античности
- •2. Воззрения древних на механическое движение
- •Лекция 9Первые попытки введения количественных характеристик в учении о движении
- •1.Понятие «Импетуса» и диаграмма Орезма
- •2.Баллистическая задача в средние века
- •3. Ростки прогрессивных воззрений в натурфилософских трудах схоластов XIV—XV вв. И возникновение университетов в Европе
- •Лекция 10. Научная революция XVI—XVII вв. И создание фундамента классической механики
- •1.Общие замечания о научной революции
- •2. Предпосылки сближения механики с общественной практикой
- •3. Первые крупные достижения научной революции
- •Лекция 11. Борьба науки против догм схоластики
- •1. Научный переворот, провозглашенный Коперником
- •2.Законы Кеплера
- •3.Учение о движении в трудах Галилея
- •4.Учение о механическом движении у Декарта
- •1.Основные проблемы техники и естествознания XVII в.
- •2.Организация академий наук в Европе
- •3.Создание теории всемирного тяготения
- •4. Геометрическая статика Вариньона
- •5.Зарождение мировоззрения механистического материализма в XVII—XVIII вв.
- •1. Преобразование исполнительной машины введение парового двигателя
- •2.Запросы техники и естествознания, стимулирующие развитие механики
- •3.Организация научно-исследовательской работы в Европе (XVIII в.)
- •1. Развитие геометрической статики (д. Бернулли, Пуансо)
- •2. Разработка принципа виртуальных скоростей учеными XVIII и начала XIX в.
- •3. Дальнейшая разработка принципа виртуальных скоростей в трудах Остроградского и его школы
- •2.Принцип Даламбера и его предыстория
- •3.Общая формула динамики Лагранжа
- •1.Аналитическая динамика в XIX в.
- •2.Теория малых колебаний и устойчивость движения
- •3.Внешняя баллистика
- •4 Прикладная механика
- •5.Изучение упругих свойств материалов
- •6.Механика жидкости и газа
- •Тема 6. Механика и методология Ньютона (1 час).
- •Тема 7. Проблемы пространства и времени (1час).
- •Тема 8. Зарождение учения о движении (1 час).
- •Тема 9.Первые попытки введения количественных характеристик в учении о движении (1 час).
- •Тема 10. Научная революция XVI—XVII вв. И создание фундамента классической механики (1 час).
- •Тема 11. Борьба науки против догм схоластики (1 час).
- •Тема 12.Создание фундамента классической механики - завершающий этап научной революции.
- •Тема 13.Развитие статики твердого тела и механической системы в xviiIиначале XIX в.
- •Тема 14. Развитие аналитической динамики в XVIII и начале XIX в.
- •Тема 15. Краткий обзор основных механических дисциплин XIX и начала XX в.
7. Оптика
В своем стремлении математически описать явления природы Архимед выделял задачи, наиболее поддающиеся геометрическому анализу. Поэтому занятия Архимеда в области геометрической оптики – «катоптрике», как ее называли прежде, можно считать закономерными.
Очень немного можно сказать о «катоптрике» Архимеда. От нее в позднем пересказе уцелела единственная теорема, в которой доказывается, что при отражении света от зеркала угол падения луча равен углу отражения. Свои оптические теории (как и механические) Архимед строил на основе аксиом. Одной из таких аксиом являлась обратимость хода луча – глаз и объект наблюдения можно поменять местами. Весь же круг вопросов «катоптрики» был очень широк. Перечисление проблем, которых касался Архимед в этой книге, мы находим у других авторов античного периода. Вот как об этих работах говорил Апулей: «Почему в плоских зеркалах предметы сохраняют свою натуральную величину, в выпуклых – уменьшаются, а в вогнутых – увеличиваются; почему левые части предметов видны справа и наоборот; когда изображение в зеркале исчезает и когда появляется; почему вогнутые зеркала, будучи поставлены против Солнца, зажигают поднесенный к ним трут; почему в небе видна радуга; почему иногда, кажется, что на небе два одинаковых Солнца, и много другого подобного же рода, о чем рассказывается в объемистом томе Архимеда». Из других свидетельств следует, что Архимед изучал также и явление преломления лучей в воде.
С «катоптрикой» связана легенда о поджоге Архимедом римских кораблей во время осады Сиракуз. Что в ней вымысел и что, быть может, является отражением действительных событий, мы рассмотрим в отдельной главе.
Можно не сомневаться в том, что «катоптрика» Архимеда оказала большое влияние на последующее развитие оптики.
8. Влияние работ Архимеда на развитие механики
Если говорить об ученых, опередивших свое время, то Архимед, вероятно, может считаться своеобразным рекордсменом. Его идеи нашли продолжателей лишь через 1800 лет.
Предложенное Архимедом направление в науке – математическая физика, которую он провозгласил и в которой так много сделал, не была воспринята ни его ближайшими потомками, ни учеными средневековья.
Архимеда знали как гениального математика, им восхищались, его изучали и комментировали, но его физические работы долгое время не получали развития.
В какой-то мере в средние века на сочинениях Архимеда базировались работы ряда ученых Востока о взвешивании и определении удельного веса веществ. Математик и астроном IXв. Сабит ибн-Корра перевел на арабский язык и прокомментировал многие сочинения Архимеда и составил трактат о рычажных весах. На основе сочинения Архимеда «О плавающих телах» крупнейшие ученые того же времени ал-Бируни и Омар Хайям провели определения удельных весов большого количества металлов и драгоценных камней. При этом ал-Бируни пользовался методом сравнения значений веса равных объемов различных минералов, а Омар Хайям – методом взвешивания образцов на воздухе и в воде.
В эпоху Возрождения, когда центр научной мысли вновь переместился в Европу, европейская наука училась у арабской. Некоторые труды Архимеда дошли до нас только в арабских переводах. Одним из первых продолжателей механики Архимеда был итальянский ученый и инженер Гвидо Убальди дель Монте (1545...1607), исследовавший вопросы равновесия и решивший задачу о грузе на наклонной плоскости. Многое сделал для развития статики Архимеда другой итальянский ученый – Джовани Баттиста Бенедетти (1530...1590). Крупнейшим механиком «школы Архимеда» был фламандский ученый Симон Стевин (1548...1620). В своем классическом труде «Начала статики» он не только исходит из ряда аксиом Архимеда, но и развивает его работы, анализируя целый ряд механизмов. В число постулатов Стевин вводит принцип невозможности вечного двигателя; ему принадлежит также введение обозначений сил в виде стрелок. Много Стевин сделал и в области гидростатики, развив положения Архимеда, данные им в «Плавающих телах». Интерес Стевина к этим проблемам был далеко не абстрактным, так как он занимал должность инспектора плотин и консультанта голландского адмиралтейства.
Главным достижением классической механики была математическая разработка законов динамики Галилеем и Ньютоном. И хотя здесь достижения Архимеда непосредственно не использовались, его математический подход к проблемам торжествовал. Знаменательно, что Галилей хорошо знал труды Архимеда и часто к ним обращался. Например, при рассмотрении равноускоренного движения он писал: «Я не предполагаю ничего иного, кроме определения движения; я хочу трактовать и рассматривать это явление в подражание Архимеду, который, заявив в «Спиральных линиях», что под движением по спирали он понимает движение, слагающееся из двух равномерных (одного – прямолинейного, а другого – кругового), непосредственно переходит к демонстрации выводов. Я заявляю о намерении исследовать признаки, присущие движению тела, начинающемуся ссостояния покоя и продолжающемуся с равномерно возрастающей скоростью, а именно так, что приращения этой скорости возрастают не скачками, а плавно, пропорционально времени».
Лекция 6. Механика и методология Ньютона План лекции
Движение - одна из основных проблем естествознания. Аристотелевское представление о движении
Механика Галилея как основа механики Ньютона
Механика Ньютона
Ньютоновская методология исследований
Оптика Ньютона – предвосхищение современной концепции о двойственной природе
света
