- •Численные методы решения задач строительства
- •Часть 1
- •Предисловие
- •В ведение
- •Общие сведения о вычислительном эксперименте и математическом моделировании
- •Численные методы.
- •Погрешности вычислений
- •Понятия точности, устойчивости и сходимости при численном решении
- •Глава 1 Основные понятия матричного исчисления
- •1.1. Матрицы и векторы.
- •1.2. Матрицы специального вида
- •1.3. Действия над матрицами
- •1.4. Нормы матрицы и вектора
- •1.5. Функции ms Excel для операций над матрицами
- •Контрольные вопросы
- •Г лава 2. Численные методы решения нелинейных уравнений
- •2.1. Первый этап. Отделение корней
- •Второй этап. Этап уточнения корня
- •Iteration (итерация)- повторение, ре-зультат повторного применения какой-либо математической операции.
- •Метод половинного деления (бисекции)
- •Метод хорд
- •Метод Ньютона (метод касательных)
- •Модифицированный метод Ньютона
- •Реализация численных методов решения нелинейных уравнений средствами приложения ms Excel
- •Последовательность действий:
- •2.3.1. Решение нелинейных уравнений с использованием надстройки «Подбор параметра»
- •Последовательность действий
- •Контрольные вопросы
- •3.2. Прямые методы решения систем линейных алгебраических уравнений
- •3.2.1. Метод Гаусса
- •3.2.2. Метод прогонки
- •Алгоритм метода прогонки
- •3.3. Итерационные методы решения систем линейных алгебраических уравнений
- •3.3.1. Метод Якоби (простых итераций)
- •3.3.2. Метод Гаусса – Зейделя.
- •3.3.3. Условия сходимости итерационного процесса
- •3.5. Устойчивость решения слау относительно исходных данных (или обусловленность задач и вычислений)
- •3.6. Примеры решения слау с использованием электронных таблиц ms Excel
- •3.6.1. Реализация метода Гаусса
- •Последовательность действий
- •Прямой ход метода Гаусса.
- •3.6.2. Решение слау с помощью надстройки «Поиск решения»
- •Последовательность действий:
- •3.6.3. Реализация метода Якоби средствами приложения ms Excel
- •Последовательность действий
- •3.6.4. Реализация метода прогонки средствами приложения Excel
- •Последовательность действий
- •Контрольные вопросы
- •Г лава 4. Численное интегрирование
- •Алгоритм метода половинного шага.
- •4.1. Квадратурные формулы прямоугольников
- •4.2. Квадратурная формула трапеций
- •4.3. Квадратурная формула Симпсона
- •4.4. Реализация методов численного интегрирования средствами приложения Ms Excel
- •Последовательность действий:
- •Контрольные вопросы
- •Г лава 5. Аппроксимация
- •5.1. Задачи аппроксимации
- •5.2. Интерполирование функций
- •5.2.1. Постановка задачи интерполирования
- •5.2.2. Интерполяционная формула Лагранжа
- •5.3. Среднеквадратичное приближение функций
- •5.3.1. Постановка задачи
- •5.3.2. Метод наименьших квадратов
- •5.3.3. Линейная эмпирическая формула (линейная регрессия)
- •5.3.4. Коэффициент корреляции
- •5.3.5. Квадратичное (параболическое) приближение
- •5.3.6. Эмпирические формулы с двумя параметрами (метод выравнивания)
- •5.4. Решение задач аппроксимации с помощью электронных таблиц Excel
- •5.4.1. Построение уравнений регрессии методом наименьших квадратов с использованием надстройки «Поиск решения»
- •Последовательность действий
- •5.4.2. Построение линейной эмпирической формулы с использованием встроенных функций линейн и тенденция
- •Последовательность действий
- •Последовательность действий
- •Контрольные вопросы
- •Глава 6. Численные методы оптимизации
- •6.1. Общие сведения
- •6.1.1. Математическая модель задачи оптимизации
- •6.1.2. Классификация задач математического программирования
- •6.2. Постановка задачи оптимального проектирования
- •6.3. Задачи линейного программирования
- •6.3.1. Общая постановка задачи
- •6.3.2. Геометрический смысл системы линейных неравенств
- •Случай n проектных параметров.
- •6.3.3. Геометрический метод решения задач линейного программирования
- •Последовательность действий:
- •6.3.4. Симплекс-метод решения задач линейного программирования
- •Примеры задач линейного программирования в сфере проектирования и управления строительным производством
- •6.4.1. Задача об оптимальном плане выпуска продукции
- •6.4.2. Задача об оптимальном раскрое материалов (о минимизации отходов)
- •6.4.3. Задача о планировании смен на предприятии
- •6.4.4. Задача о покрытии местности при строительстве объектов
- •6.4.5. Транспортная задача
- •Задача о назначениях (проблема выбора)
- •6.5. Решение задач оптимизации с помощью ms Excel
- •6.5.1. Решение задачи планирования производства
- •Последовательность действий:
- •6.5.2. Решение транспортной задачи
- •Последовательность действий:
- •Контрольные вопросы
- •Литература
- •Глава 1 16
- •Глава 2. 27
- •Глава 3. 51
- •Глава 4. 86
- •Глава 5. 100
- •Глава 6. 125
Погрешности вычислений
На некоторых этапах вычислительного эксперимента могут возникнуть погрешности, искажающие результаты вычислений. Поэтому оценка степени достоверности получаемых результатов в процессе вычислительных работ является важным вопросом.
Рассмотрим источники погрешностей на отдельных этапах решения задачи [6, 9, 12].
Погрешность задачи, обусловленная неточным заданием математической модели. Погрешность ММ рассматриваться здесь не будет.
Исходные данные задачи чаще всего являются основным источником погрешностей. Для вычислителя это неустранимая погрешность (не зависит от математики). Исходные данные чаще всего задаются неточно. Они могут быть получены в процессе эксперимента. В технических задачах погрешность измерений допускается в пределах 5–10%. А так же в процессе предварительных расчетов, где надо учитывать погрешности округления.
Погрешность метода или погрешность дискретизации, возникающая при замене исходной задачи – дискретной.
Погрешность численного метода связана с тем, что точные операторы заменяются приближенными. Например, интеграл заменяется суммой, производная – разностью, функция – многочленом (разложение в ряд), бесконечный итерационный процесс заканчивается после выполнения конечного числа итераций и т.д.
Погрешность метода надо выбирать так, чтобы она была в несколько раз меньше погрешности исходных данных. Большая погрешность снижает точность результата, а меньшая бесполезна, т.к. приводит к необоснованному увеличению объемов вычислений. Надо помнить, что никакие манипуляции с данными не увеличат их точность.
Как правило, описание того или иного численного метода содержит оценку точности этого метода.
Погрешность округлений возникает при вычислениях с помощью ЭВМ, что связано с ограниченностью разрядной сетки.
Понятия точности, устойчивости и сходимости при численном решении
При выборе численного метода необходимо оценить такие его характеристики, такие как точность, устойчивость и сходимость.
Точность – это мера близости численного решения к точному, или истинному, решению.
Устойчивость. При решении инженерных задач неизбежно появляются погрешности исходных данных (входных параметров). Поэтому возникает вопрос о том, насколько чувствительными могут оказаться сами задачи и их решения к таким погрешностям.
Т.е. вопрос об устойчивости решения - это вопрос о том, как зависит решение задачи от входных параметров.
Если решение существует и единственно, то возможны два варианта.
Решение задачи непрерывно зависит от входных параметров, т.е. малым изменениям входных параметров (возмущениям) соответствует малое изменение решения задачи. Такое решение называется устойчивым, а сама задача – корректной.
Если же небольшие возмущения исходных данных приводят к большим изменениям решения, то это решение называется неустойчивым, а сама задача – некорректной.
Корректность. Задача называется поставленной корректной, если решение существует, единственно и устойчиво относительно исходных данных из некоторого класса ее решений. [8, 12].
Применять ЧМ для решения некорректно поставленных задач нецелесообразно, поскольку погрешности округления, возникающие в расчетах, будут быстро возрастать по ходу вычислений, что приведет к существенным искажениям результатов.
Сходимость – это постепенное приближение последовательно вычисляемых приближенных решений к предельному (точному) решению.
Термин сходимости применяется к построению итерационной последовательности, в которой одно приближенное решение (итерация) становится исходной информацией для следующего приближенного решения.
Таким образом, в сходящемся процессе разница между соседними приближениями (итерациями) уменьшается, стремясь в пределе к нулю.
Итак, чтобы получить решение задачи с необходимой точностью, ее постановка должна быть корректной, а применяемый ЧМ должен обладать устойчивостью и сходимостью.
