Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Книга-ЧМ-Часть1.docx
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
2.76 Mб
Скачать

6.4.2. Задача об оптимальном раскрое материалов (о минимизации отходов)

В строительном деле достаточно часто приходится решать проблему раскроя полуфабрикатов или минимизации отходов производства.

Постановка задачи. Из имеющихся заготовок в виде досок длиной D каждая требуется получить bi частей длиной Li (i=1,2,…,m). Имеется несколько вариантов раскроя Vj (j=1,2,…,n) каждой доски L (план раскроя).

При каждом j-м варианте раскроя получается aij частей длиной lj. (При этом . Это условие, наложенное на коэффициенты, содержится в определении «вариант раскроя» и не является условием оптимизации).

Требуется так распилить доски, чтобы было как можно меньше отходов, или требуемое количество частей должно быть получено из минимального количества заготовок.

В качестве независимых параметров выбираем xj – количество досок (заготовок), распиленное по j-му варианту.

Оптимизацию будем проводить исходя из минималь-ного количества распиленных заготовок.

Математической модели задачи имеет вид: минимизировать целевую функцию

при ограничениях:

Задачи об оптимальном раскрое довольно разнообразны и в качестве примера рассмотрим еще один вариант такой задачи.

  • Пример 6.7. При серийном производстве некоторого изделия из полос проката длиной 5000мм необходимо вырезать 3 вида заготовок. Номер, длина и количество заготовок:

№1 длина 1655мм, 1шт.

№2 длина 1050мм, 5шт.

№3 длина 210мм, 1шт.

Требуется составить оптимальный план раскроя, чтобы получить комплект заготовок для 12 изделий и израсходовать при этом минимальное количество полос.

Решение

Оптимизацию будем производить, исходя из минимальных отходов полос проката при их раскрое.

  1. Составим таблицу - карту раскроя:

Cпособ

раскроя

Количество заготовок длиной (мм)

Полезно

используемая

длина (мм)

Длина

отходов (мм)

Количество

полос

1655

1050

210

1

2

3

4

3

2

1

0

0

1

3

4

0

1

0

1

4965

4570

4805

4410

35

430

195

590

x1

x2

x3

x4

Таким образом, получилось четыре способа раскроя полос.

  1. В качестве проектных параметров возьмем: xi – количество прокатных полос, раскроенных i-способом.

  2. Определим длину отходов при каждом способе раскроя.

  3. В качестве функции цели примем суммарную длину отходов, которая должна быть минимальной:

Zmin = 35x1 + 430x2 + 195x3 + 590x4.

  1. Запишем ограничения. Для 12 изделий необходимо заготовок:

№1 – 12 шт. №2 – 12 × 5 шт.; №3 – 12 шт.

Ограничения записываем исходя из условий, что количество заготовок для 12 изделий должно быть не меньше соответственно 12, 60, 12:

6.4.3. Задача о планировании смен на предприятии

Полученная ММ задачи об оптимальном раскрое материалов (6.23) – (6.25) может быть использована также при решении задач о планировании смен на предприятии.

Только в этом случае содержательный смысл параметров будет другой, а именно:

Vj (j=1,2,…,n) – возможные в течение дня смены;

Li (i=1,2,…,m) – определенное время дня;

аij = 1, если Vj предусматривает работу во время Li, в противном случае аij = 0;

bi – число работников, требующихся в момент времени Li;

xj – количество работников смены Vj.