- •Численные методы решения задач строительства
- •Часть 1
- •Предисловие
- •В ведение
- •Общие сведения о вычислительном эксперименте и математическом моделировании
- •Численные методы.
- •Погрешности вычислений
- •Понятия точности, устойчивости и сходимости при численном решении
- •Глава 1 Основные понятия матричного исчисления
- •1.1. Матрицы и векторы.
- •1.2. Матрицы специального вида
- •1.3. Действия над матрицами
- •1.4. Нормы матрицы и вектора
- •1.5. Функции ms Excel для операций над матрицами
- •Контрольные вопросы
- •Г лава 2. Численные методы решения нелинейных уравнений
- •2.1. Первый этап. Отделение корней
- •Второй этап. Этап уточнения корня
- •Iteration (итерация)- повторение, ре-зультат повторного применения какой-либо математической операции.
- •Метод половинного деления (бисекции)
- •Метод хорд
- •Метод Ньютона (метод касательных)
- •Модифицированный метод Ньютона
- •Реализация численных методов решения нелинейных уравнений средствами приложения ms Excel
- •Последовательность действий:
- •2.3.1. Решение нелинейных уравнений с использованием надстройки «Подбор параметра»
- •Последовательность действий
- •Контрольные вопросы
- •3.2. Прямые методы решения систем линейных алгебраических уравнений
- •3.2.1. Метод Гаусса
- •3.2.2. Метод прогонки
- •Алгоритм метода прогонки
- •3.3. Итерационные методы решения систем линейных алгебраических уравнений
- •3.3.1. Метод Якоби (простых итераций)
- •3.3.2. Метод Гаусса – Зейделя.
- •3.3.3. Условия сходимости итерационного процесса
- •3.5. Устойчивость решения слау относительно исходных данных (или обусловленность задач и вычислений)
- •3.6. Примеры решения слау с использованием электронных таблиц ms Excel
- •3.6.1. Реализация метода Гаусса
- •Последовательность действий
- •Прямой ход метода Гаусса.
- •3.6.2. Решение слау с помощью надстройки «Поиск решения»
- •Последовательность действий:
- •3.6.3. Реализация метода Якоби средствами приложения ms Excel
- •Последовательность действий
- •3.6.4. Реализация метода прогонки средствами приложения Excel
- •Последовательность действий
- •Контрольные вопросы
- •Г лава 4. Численное интегрирование
- •Алгоритм метода половинного шага.
- •4.1. Квадратурные формулы прямоугольников
- •4.2. Квадратурная формула трапеций
- •4.3. Квадратурная формула Симпсона
- •4.4. Реализация методов численного интегрирования средствами приложения Ms Excel
- •Последовательность действий:
- •Контрольные вопросы
- •Г лава 5. Аппроксимация
- •5.1. Задачи аппроксимации
- •5.2. Интерполирование функций
- •5.2.1. Постановка задачи интерполирования
- •5.2.2. Интерполяционная формула Лагранжа
- •5.3. Среднеквадратичное приближение функций
- •5.3.1. Постановка задачи
- •5.3.2. Метод наименьших квадратов
- •5.3.3. Линейная эмпирическая формула (линейная регрессия)
- •5.3.4. Коэффициент корреляции
- •5.3.5. Квадратичное (параболическое) приближение
- •5.3.6. Эмпирические формулы с двумя параметрами (метод выравнивания)
- •5.4. Решение задач аппроксимации с помощью электронных таблиц Excel
- •5.4.1. Построение уравнений регрессии методом наименьших квадратов с использованием надстройки «Поиск решения»
- •Последовательность действий
- •5.4.2. Построение линейной эмпирической формулы с использованием встроенных функций линейн и тенденция
- •Последовательность действий
- •Последовательность действий
- •Контрольные вопросы
- •Глава 6. Численные методы оптимизации
- •6.1. Общие сведения
- •6.1.1. Математическая модель задачи оптимизации
- •6.1.2. Классификация задач математического программирования
- •6.2. Постановка задачи оптимального проектирования
- •6.3. Задачи линейного программирования
- •6.3.1. Общая постановка задачи
- •6.3.2. Геометрический смысл системы линейных неравенств
- •Случай n проектных параметров.
- •6.3.3. Геометрический метод решения задач линейного программирования
- •Последовательность действий:
- •6.3.4. Симплекс-метод решения задач линейного программирования
- •Примеры задач линейного программирования в сфере проектирования и управления строительным производством
- •6.4.1. Задача об оптимальном плане выпуска продукции
- •6.4.2. Задача об оптимальном раскрое материалов (о минимизации отходов)
- •6.4.3. Задача о планировании смен на предприятии
- •6.4.4. Задача о покрытии местности при строительстве объектов
- •6.4.5. Транспортная задача
- •Задача о назначениях (проблема выбора)
- •6.5. Решение задач оптимизации с помощью ms Excel
- •6.5.1. Решение задачи планирования производства
- •Последовательность действий:
- •6.5.2. Решение транспортной задачи
- •Последовательность действий:
- •Контрольные вопросы
- •Литература
- •Глава 1 16
- •Глава 2. 27
- •Глава 3. 51
- •Глава 4. 86
- •Глава 5. 100
- •Глава 6. 125
Численные методы.
Таким образом, с помощью математического моделирования решение строительных задач может быть сведено к решению математических задач, для решения которых могут быть использованы такие группы методов, как аналитические и численные.
Аналитические методы (их еще иногда называют «точными») позволяют выразить решение в виде формул.
Построенная математическая модель в редких случаях допускает аналитическое решение.
Тогда на помощь приходят численные методы во всем их многообразии.
Численные методы и их реализация на ЭВМ составляют содержание огромного раздела современной математики – «Вычислительная математика
Численные методы (ЧМ) – это методы решения математической задачи, сводящиеся к конечному числу арифметических и некоторых логических действий над числами, то есть к тем действиям, которые может выполнить ЭВМ.
При использовании ЧМ стремятся найти какой-либо процесс, чаще всего бесконечный, сходящийся к искомому ответу. В результате получается приближенное решение задачи, так как выполняется конечное число шагов, и вычисления обрываются. Такой подход был известен еще до появления ЭВМ, но применялся весьма редко из-за исключительной трудоемкости вычислений.
Применение численных методов на базе ЭВМ позволяет решать такие задачи, о которых полвека назад могли только мечтать. Это расчет пространственных сооружений, структурных конструкций, которые широко применяются в настоящее время для устройства перекрытий различных объектов, пространственных конструкций в виде оболочек, висячих покрытий и др.
Дискретизация. Общим для всех численных методов является сведение непрерывной математической задачи к задаче конечномерной, то есть переход от функций непрерывного аргумента к функциям дискретного аргумента. При этом область изменения аргумента x заменяется дискретным множеством точек (узлов) xi , Это множество называется сеточной областью (разностной сеткой или просто сеткой):
n { x0=a, xi = xi-1 +h ( i = 1, 2, ….n-1), xn=b, h = (b-a)/n},
где xi, –узлы сетки ( i=0, 1, 2, ….n),
h – шаг сеточной области.
А заданная непрерывная на [a, b] функция y=y(x) заменяется функцией дискретного аргумента yi = f(xi), ( i=0, 1, 2, ….n) на этой сеточной области (т.е. таблицей). Так заданная функция называется сеточной [3, 12].
Если исходная математическая задача формулируется в виде дифференциального уравнения или системы таких уравнений, то при численном решении задачи ее заменяют системой конечного, возможно, очень большого числа линейных алгебраических уравнений (СЛАУ) и говорят, что проведена дискретизация исходной математической задачи.
В общем случае дискретную модель можно рассматривать как конечномерный аналог исходной математической задачи.
Чаще всего дискретная модель зависит от некоторого параметра дискретизации (например, шага сетки h), при стремлении которого к нулю число узлов сетки xi, ( i=0, 1, 2, ….n) неограниченно возрастает.
После дискретизации задачи строится вычислительный алгоритм (последовательность арифметических и логических операций, выполняемых на ЭВМ), т.е. выбирается какой-либо численный метод, дающий за конечное число действий решение дискретной задачи.
Результатом реализации ЧМ на ЭВМ является число или таблица чисел {xi ,yi}, где i = 0, 1, 2, ….n.
Полученное решение принимается за приближенное решение исходной задачи.
Для одной и той же задачи можно использовать несколько численных методов. Пользователю надо уметь выбрать наиболее рациональный из них для каждого конкретного случая. Правильный выбор численного метода делается на основе знания его характеристик, таких как универсальность, экономичность, устойчивость, простота. И выбирая тот или иной численный метод, надо помнить, что уровень точности метода должен быть адекватен точности модели.
Кроме того, надо помнить, что вычислительный алгоритм (численный метод) должен давать решение исходной задачи с заданной точностью за конечное число действий (за допустимое машинное время).
Численные методы не всесильны. Они не заменяют аналитические методы. Их следует применять в комбинации.
