- •Численные методы решения задач строительства
- •Часть 1
- •Предисловие
- •В ведение
- •Общие сведения о вычислительном эксперименте и математическом моделировании
- •Численные методы.
- •Погрешности вычислений
- •Понятия точности, устойчивости и сходимости при численном решении
- •Глава 1 Основные понятия матричного исчисления
- •1.1. Матрицы и векторы.
- •1.2. Матрицы специального вида
- •1.3. Действия над матрицами
- •1.4. Нормы матрицы и вектора
- •1.5. Функции ms Excel для операций над матрицами
- •Контрольные вопросы
- •Г лава 2. Численные методы решения нелинейных уравнений
- •2.1. Первый этап. Отделение корней
- •Второй этап. Этап уточнения корня
- •Iteration (итерация)- повторение, ре-зультат повторного применения какой-либо математической операции.
- •Метод половинного деления (бисекции)
- •Метод хорд
- •Метод Ньютона (метод касательных)
- •Модифицированный метод Ньютона
- •Реализация численных методов решения нелинейных уравнений средствами приложения ms Excel
- •Последовательность действий:
- •2.3.1. Решение нелинейных уравнений с использованием надстройки «Подбор параметра»
- •Последовательность действий
- •Контрольные вопросы
- •3.2. Прямые методы решения систем линейных алгебраических уравнений
- •3.2.1. Метод Гаусса
- •3.2.2. Метод прогонки
- •Алгоритм метода прогонки
- •3.3. Итерационные методы решения систем линейных алгебраических уравнений
- •3.3.1. Метод Якоби (простых итераций)
- •3.3.2. Метод Гаусса – Зейделя.
- •3.3.3. Условия сходимости итерационного процесса
- •3.5. Устойчивость решения слау относительно исходных данных (или обусловленность задач и вычислений)
- •3.6. Примеры решения слау с использованием электронных таблиц ms Excel
- •3.6.1. Реализация метода Гаусса
- •Последовательность действий
- •Прямой ход метода Гаусса.
- •3.6.2. Решение слау с помощью надстройки «Поиск решения»
- •Последовательность действий:
- •3.6.3. Реализация метода Якоби средствами приложения ms Excel
- •Последовательность действий
- •3.6.4. Реализация метода прогонки средствами приложения Excel
- •Последовательность действий
- •Контрольные вопросы
- •Г лава 4. Численное интегрирование
- •Алгоритм метода половинного шага.
- •4.1. Квадратурные формулы прямоугольников
- •4.2. Квадратурная формула трапеций
- •4.3. Квадратурная формула Симпсона
- •4.4. Реализация методов численного интегрирования средствами приложения Ms Excel
- •Последовательность действий:
- •Контрольные вопросы
- •Г лава 5. Аппроксимация
- •5.1. Задачи аппроксимации
- •5.2. Интерполирование функций
- •5.2.1. Постановка задачи интерполирования
- •5.2.2. Интерполяционная формула Лагранжа
- •5.3. Среднеквадратичное приближение функций
- •5.3.1. Постановка задачи
- •5.3.2. Метод наименьших квадратов
- •5.3.3. Линейная эмпирическая формула (линейная регрессия)
- •5.3.4. Коэффициент корреляции
- •5.3.5. Квадратичное (параболическое) приближение
- •5.3.6. Эмпирические формулы с двумя параметрами (метод выравнивания)
- •5.4. Решение задач аппроксимации с помощью электронных таблиц Excel
- •5.4.1. Построение уравнений регрессии методом наименьших квадратов с использованием надстройки «Поиск решения»
- •Последовательность действий
- •5.4.2. Построение линейной эмпирической формулы с использованием встроенных функций линейн и тенденция
- •Последовательность действий
- •Последовательность действий
- •Контрольные вопросы
- •Глава 6. Численные методы оптимизации
- •6.1. Общие сведения
- •6.1.1. Математическая модель задачи оптимизации
- •6.1.2. Классификация задач математического программирования
- •6.2. Постановка задачи оптимального проектирования
- •6.3. Задачи линейного программирования
- •6.3.1. Общая постановка задачи
- •6.3.2. Геометрический смысл системы линейных неравенств
- •Случай n проектных параметров.
- •6.3.3. Геометрический метод решения задач линейного программирования
- •Последовательность действий:
- •6.3.4. Симплекс-метод решения задач линейного программирования
- •Примеры задач линейного программирования в сфере проектирования и управления строительным производством
- •6.4.1. Задача об оптимальном плане выпуска продукции
- •6.4.2. Задача об оптимальном раскрое материалов (о минимизации отходов)
- •6.4.3. Задача о планировании смен на предприятии
- •6.4.4. Задача о покрытии местности при строительстве объектов
- •6.4.5. Транспортная задача
- •Задача о назначениях (проблема выбора)
- •6.5. Решение задач оптимизации с помощью ms Excel
- •6.5.1. Решение задачи планирования производства
- •Последовательность действий:
- •6.5.2. Решение транспортной задачи
- •Последовательность действий:
- •Контрольные вопросы
- •Литература
- •Глава 1 16
- •Глава 2. 27
- •Глава 3. 51
- •Глава 4. 86
- •Глава 5. 100
- •Глава 6. 125
3.6. Примеры решения слау с использованием электронных таблиц ms Excel
3.6.1. Реализация метода Гаусса
Рассмотрим решение системы линейных алгебраических уравнений (пример 3.1) методом Гаусса, используя таблицы Excel.
Последовательность действий
Введем расширенную матрицу системы, как показано на рис.3.3, в ячейки А3:D5.
Рис.3.3. Реализация
метода Гаусса в MS
Excel
Прямой ход метода Гаусса.
Поделим элементы 1-ой строки на а11 .Для этого в ячейку А7 введем формулу
А7=А3/$A$3*
и скопируем ее вправо до конца строки.
Умножим элементы 1-ой строки на (–а21 ) и прибавим ко 2-й строке. Для этого введем формулу
А8=А7*(-$А$4)+А4
и скопируем ее вправо до конца строки.
Умножим элементы 1-ой строки на (–а31 ) и прибавим к 3-й строке. Для этого введем формулу
А9=А7*(-А$5$)+А5
и скопируем ее вправо до конца строки.
Таким образом исключили неизвестное х1 из 2-го и 3-го уравнений системы (смотри 1-й шаг рис.3.3).
Осталось исключить неизвестное х2 из 3-го уравнения системы. Для этого реализуем описанный выше алгоритм для 2-й и 3-й строк (смотри 2-й шаг рис.3.3).
На этом прямой ход метода Гаусс закончен, матрица системы приведена к треугольному виду.
Обратный ход метода Гаусса.
Найдем последовательно неизвестные, начиная с последней строки. Для этого в ячейки G12:G14 запишем формулы:
G4=D13/C13 (для вычисления x3);
G3=D12-C12*G4 (для вычисления x2);
G2=D11-C11*G4-B11*G3 (для вычисления x1).
3.6.2. Решение слау с помощью надстройки «Поиск решения»
Систему линейных
алгебраических уравнений можно также
решить, используя надстройку
«Поиск решения».
При использовании данной надстройки
строится последовательность приближений
,
i=0,1,…n.
Назовем вектором невязок следующий вектор:
Задача Excel заключается в том, чтобы найти такое приближение , при котором вектор невязок стал бы нулевым, т.е. добиться совпадения значений правых и левых частей системы .
В качестве примера рассмотрим СЛАУ (3.27).
Последовательность действий:
Оформим таблицу, как показано на рис.3.4. Введем коэффициенты системы (матрицу А) в ячейки А3:С5.
Рис.3.4. Решение СЛАУ с помощью надстройки «Поиск решения»
В ячейках А8:С8 будет сформировано решение системы (х1, х2, х3). Первоначально они остаются пустыми, т.е. равными нулю. В дальнейшем будем их называть изменяемыми ячейками.. Однако для контроля правильности вводимых далее формул, удобно ввести в эти ячейки какие-либо значения, например, единицы. Эти значения можно рассматривать как нулевое приближение решения системы,
=
(1, 1, 1).В столбец D введем выражения для вычисления левых частей исходной системы. Для этого в ячейку D3 введем и затем скопируем вниз до конца таблицы формулу:
D3=СУММПРОИЗВ (A3:C3;$A$8:$C$8).
Используемая функция СУММПРОИЗВ принадлежит категории Математические.
В столбец Е запишем значения правых частей системы (матрицу В).
В столбец F введем невязки в соответствии с формулой (3.29), т.е. введем формулу F3=D3-E3 и скопируем ее вниз до конца таблицы.
Будет не лишним проверить правильность вычислений для случая = (1, 1, 1).
Выберем команду Данные\Анализ\Поиск решения.
Рис. 3.5. Окно надстройки «Поиск решения»
В окне Поиск решения (рис.3.5) в поле Изменяемые ячейки укажем блок $А$8:$С$8, а в поле Ограничения – $F$3:$F$5=0. Далее щелкнем по кнопке Добавить и введем эти ограничения. И затем - кнопка Выполнить
Полученное решение систем (3.28) х1=1; х2=–1 х3=2 записано в ячейках А8:С8, рис.3.4.
