- •Численные методы решения задач строительства
- •Часть 1
- •Предисловие
- •В ведение
- •Общие сведения о вычислительном эксперименте и математическом моделировании
- •Численные методы.
- •Погрешности вычислений
- •Понятия точности, устойчивости и сходимости при численном решении
- •Глава 1 Основные понятия матричного исчисления
- •1.1. Матрицы и векторы.
- •1.2. Матрицы специального вида
- •1.3. Действия над матрицами
- •1.4. Нормы матрицы и вектора
- •1.5. Функции ms Excel для операций над матрицами
- •Контрольные вопросы
- •Г лава 2. Численные методы решения нелинейных уравнений
- •2.1. Первый этап. Отделение корней
- •Второй этап. Этап уточнения корня
- •Iteration (итерация)- повторение, ре-зультат повторного применения какой-либо математической операции.
- •Метод половинного деления (бисекции)
- •Метод хорд
- •Метод Ньютона (метод касательных)
- •Модифицированный метод Ньютона
- •Реализация численных методов решения нелинейных уравнений средствами приложения ms Excel
- •Последовательность действий:
- •2.3.1. Решение нелинейных уравнений с использованием надстройки «Подбор параметра»
- •Последовательность действий
- •Контрольные вопросы
- •3.2. Прямые методы решения систем линейных алгебраических уравнений
- •3.2.1. Метод Гаусса
- •3.2.2. Метод прогонки
- •Алгоритм метода прогонки
- •3.3. Итерационные методы решения систем линейных алгебраических уравнений
- •3.3.1. Метод Якоби (простых итераций)
- •3.3.2. Метод Гаусса – Зейделя.
- •3.3.3. Условия сходимости итерационного процесса
- •3.5. Устойчивость решения слау относительно исходных данных (или обусловленность задач и вычислений)
- •3.6. Примеры решения слау с использованием электронных таблиц ms Excel
- •3.6.1. Реализация метода Гаусса
- •Последовательность действий
- •Прямой ход метода Гаусса.
- •3.6.2. Решение слау с помощью надстройки «Поиск решения»
- •Последовательность действий:
- •3.6.3. Реализация метода Якоби средствами приложения ms Excel
- •Последовательность действий
- •3.6.4. Реализация метода прогонки средствами приложения Excel
- •Последовательность действий
- •Контрольные вопросы
- •Г лава 4. Численное интегрирование
- •Алгоритм метода половинного шага.
- •4.1. Квадратурные формулы прямоугольников
- •4.2. Квадратурная формула трапеций
- •4.3. Квадратурная формула Симпсона
- •4.4. Реализация методов численного интегрирования средствами приложения Ms Excel
- •Последовательность действий:
- •Контрольные вопросы
- •Г лава 5. Аппроксимация
- •5.1. Задачи аппроксимации
- •5.2. Интерполирование функций
- •5.2.1. Постановка задачи интерполирования
- •5.2.2. Интерполяционная формула Лагранжа
- •5.3. Среднеквадратичное приближение функций
- •5.3.1. Постановка задачи
- •5.3.2. Метод наименьших квадратов
- •5.3.3. Линейная эмпирическая формула (линейная регрессия)
- •5.3.4. Коэффициент корреляции
- •5.3.5. Квадратичное (параболическое) приближение
- •5.3.6. Эмпирические формулы с двумя параметрами (метод выравнивания)
- •5.4. Решение задач аппроксимации с помощью электронных таблиц Excel
- •5.4.1. Построение уравнений регрессии методом наименьших квадратов с использованием надстройки «Поиск решения»
- •Последовательность действий
- •5.4.2. Построение линейной эмпирической формулы с использованием встроенных функций линейн и тенденция
- •Последовательность действий
- •Последовательность действий
- •Контрольные вопросы
- •Глава 6. Численные методы оптимизации
- •6.1. Общие сведения
- •6.1.1. Математическая модель задачи оптимизации
- •6.1.2. Классификация задач математического программирования
- •6.2. Постановка задачи оптимального проектирования
- •6.3. Задачи линейного программирования
- •6.3.1. Общая постановка задачи
- •6.3.2. Геометрический смысл системы линейных неравенств
- •Случай n проектных параметров.
- •6.3.3. Геометрический метод решения задач линейного программирования
- •Последовательность действий:
- •6.3.4. Симплекс-метод решения задач линейного программирования
- •Примеры задач линейного программирования в сфере проектирования и управления строительным производством
- •6.4.1. Задача об оптимальном плане выпуска продукции
- •6.4.2. Задача об оптимальном раскрое материалов (о минимизации отходов)
- •6.4.3. Задача о планировании смен на предприятии
- •6.4.4. Задача о покрытии местности при строительстве объектов
- •6.4.5. Транспортная задача
- •Задача о назначениях (проблема выбора)
- •6.5. Решение задач оптимизации с помощью ms Excel
- •6.5.1. Решение задачи планирования производства
- •Последовательность действий:
- •6.5.2. Решение транспортной задачи
- •Последовательность действий:
- •Контрольные вопросы
- •Литература
- •Глава 1 16
- •Глава 2. 27
- •Глава 3. 51
- •Глава 4. 86
- •Глава 5. 100
- •Глава 6. 125
2.3.1. Решение нелинейных уравнений с использованием надстройки «Подбор параметра»
Решение нелинейных уравнений можно реализовать в приложении MS Excel с использованием надстройки Подбор параметра, где реализуется некоторый итерационный процесс.
Найдем корни рассмотренного выше уравнения (2.18).
За нулевое приближение решения уравнения, как это видно из рис.2.13, можно принять х0 =4 или х0 =4,5.
Последовательность действий
Подготовим таблицу, как показано на рис.2.13. В ячейку А2 введем некоторое значение х0 (например х0 =4) из ОДЗ функции y=f(x). Это будет начальным приближением для итерационного процесса, реализуемого приложением Подбор параметра.
Ячейка В2 является изменяемой ячейкой в процессе работы надстройки. Введем в нее это значение х0 , а в ячейке С3 вычислим значение функции f(xn) для этого приближения.
Выберем команду:
Данные \ Работа с данными \ Анализ «что-если»\ Подбор параметра.
В окне «Подбор параметра» сделаем установки, как показано на рис.2.13 и нажмем кнопку ОК.
Рис.2.13. Решение нелинейного уравнения с помощью надстройки «Подбор параметра»
Если все было проделано правильно, то в ячейке В2 (рис.2.13) будет получено приближенное значение корня нашего уравнения.
Проделайте все эти операции ещё раз с другим значением начального приближения, например х0 =4,5.
Контрольные вопросы
Какое уравнение называется нелинейным. Что является решением нелинейного уравнения.
Геометрическая интерпретация решения нелинейного уравнения.
Методы решения нелинейного уравнения (прямые и итерационные), в чем разница.
Два этапа численного решения нелинейного уравнения. Какие задачи ставятся на первом и втором этапах.
Первый этап решения нелинейного уравнения. Как выбирается нулевое приближение (нулевая итерация).
Построение итерационной последовательности. Понятие сходимости итерационной последовательности. Нахождение приближенного значения корня нелинейного уравнения с точностью ε.
Геометрическая интерпретация численных методов решения нелинейного уравнения: половинного деления, Ньютона (касательных), хорд.
Г
лава 3.
Численные методы решения систем
линейных алгебраических уравнений
«75% всех расчетных математических задач прихо-дится на решение систем линейных алгебраических урав-нений»
Е. Валях
Применение численных методов для решения задач строительства часто сводится к решению систем линейных алгебраических уравнений (СЛАУ).
3.1. Системы линейных алгебраических уравнений
Системы линейных алгебраических уравнений могут непосредственно составлять задачу из области строительных технологий, которую необходимо решить. Это канонические уравнения метода сил, метода перемещений, смешанного, комбинированного методов – в расчетах статически неопределимых систем. Это уравнения равновесия (баланс сил) – в расчетах статически определимых систем и др. С другой стороны, многие задачи строительства при их математической постановке сводятся к решению системы линейных алгебраических уравнений той или иной структуры. Это краевые задачи, описываемые дифференциальными уравнениями, вариационные задачи и др.).
Система линейных алгебраических уравнений в общем случае имеет вид
Эту систему удобнее записывать в матричной форме
где
А
– матрица системы,
–
вектор решения,
– вектор свободных членов.
Решение систем линейных алгебраических уравнений представляет собой типичный образец численных расчетов, которыми занимались еще в древности. Это основной “строительный блок” для алгоритмов решения большинства задач, в которых используются математические модели.
Система (3.1) имеет
единственное
решение [8],
если матрица А
невырожденная
(det A
0).
Если использовать понятие обратной матрицы (А-1), то решение СЛАУ можно записать
Такой подход к решению СЛАУ крайне неэффективен, т.к. вычислительные потери при вычислении обратной матрицы очень большие. И если нет необходимости исследовать непосредственно элементы обратной матрицы, то лучше не вычислять ее.
В курсе линейной алгебры решение системы (3.1) обычно находится по формулам Крамара в виде отношения определителей.
Для численного решения систем высокого порядка (а именно такие встречаются при решении задач строительства) этот метод непригоден, так как требует вычисления (n+1)-го определителя. Даже при выборе наилучшего метода вычисление одного определителя потребуется такое же временя, что и для решение самой системы современными численными методами.
Методы решения СЛАУ. Все методы решения СЛАУ можно условно разбить на два класса: прямые (или точные) и итерационные. Имеются и «гибридные» методы [3, 4].
Прямые методы позволяют за конечное число действий получить точное решение системы. Слова “точное решение” нужно понимать условно, как характеристику алгоритма, а не реального вычислительного процесса.
Итерационные методы дают решение СЛАУ в виде предела последовательности некоторых векторов, построение которых осуществляется посредством единообразного процесса, называемого итерационным процессом. Они позволяют найти приближенное решение системы с заданной точностью.
Выбор того или иного метода зависит от многих обстоятельств:
от вида матрицы коэффициентов;
от порядка системы;
от имеющегося программного обеспечения;
от объема оперативной памяти ЭВМ и др.
