Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теор._вер._10.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
809.98 Кб
Скачать

7.1.2. Распределение Пуассона

Пусть имеется n испытаний Бернулли, при этом число испытаний n достаточно велико. Ранее было показано, что в этом случае (если к тому же вероятность р события А очень мала) для нахождения вероятности того, что событие А появиться т раз в испытаниях можно воспользоваться формулой Пуассона (4.9). Если случайная величина Х означает число появлений события А в n испытаниях Бернулли, то вероятность того, что Х примет значение k может быть вычислена по формуле

, (7.2)

где λ = .

Законом распределения Пуассона называется распределение дискретной случайной величины Х, для которой возможными значениями являются целые неотрицательные числа, а вероятности рт этих значений находятся по формуле (7.2).

Величина λ = называется параметром распределения Пуассона.

Случайная величина, распределенная по закону Пуассона, может принимать бесконечное множество значений. Так как для этого распределения вероятность р появления события в каждом испытании мала, то это распределение иногда называют законом редких явлений.

Ряд распределения случайной величины, распределенной по закону Пуассона, имеет вид

Х

0

1

2

3

т

Р

Нетрудно убедиться, что сумма вероятностей второй строки равна 1. Для этого необходимо вспомнить, что функцию можно разложить в ряд Маклорена, который сходится для любого х. В данном случае имеем

. (7.3)

Тогда

Как было отмечено, закон Пуассона в определенных предельных случаях заменяет биномиальный закон. В качестве примера можно привести случайную величину Х, значения которой равны количеству сбоев за определенный промежуток времени при многократном применении технического устройства. При этом предполагается, что это устройство высокой надежности, т.е. вероятность сбоя при одном применении очень мала.

Кроме таких предельных случаев, на практике встречаются случайные величины, распределенные по закону Пуассона, не связанные с биномиальным распределением. Например, распределение Пуассона часто используется тогда, когда имеют дело с числом событий, появляющихся в промежутке времени (число поступлений вызовов на телефонную станцию в течение часа, число машин, прибывших на авто мойку в течение суток, число остановок станков в неделю и т.п.). Все эти события должны образовывать, так называемый поток событий, который является одним из основных понятий теории массового обслуживания. Параметр λ характеризует среднюю интенсивность потока событий.

Пример 7.2. На факультете насчитывается 500 студентов. Какова вероятность того, что 1 сентября является днем рождения для трех студентов данного факультета?

Решение. Так как число студентов n=500 достаточно велико и р – вероятность родится первого сентября любому из студентов равна , т.е. достаточно мала, то можно считать, что случайная величина Х – число студентов, родившихся первого сентября, распределена по закону Пуассона с параметром λ = np= =1,36986. Тогда, по формуле (7.2) получим

. ■

Теорема 7.3. Пусть случайная величина Х распределена по закону Пуассона. Тогда ее математическое ожидание и дисперсия равны друг другу и равны значению параметра λ, т.е. M(X) = D(X) = λ = np.

Доказательство. По определению математического ожидания, используя формулу (7.3) и ряд распределения случайной величины, распределенной по закону Пуассона, получим

.

Прежде, чем найти дисперсию, найдем вначале математическое ожидание квадрата рассматриваемой случайной величины. Получаем

Отсюда, по определению дисперсии, получаем

.

Теорема доказана.

Применяя понятия начальных и центральных моментов, можно показать, что для случайной величины, распределенной по закону Пуассона, коэффициенты асимметрии и эксцесса определяются по формулам

и .

Нетрудно понять, что, так как по смысловому содержанию параметр λ = np положителен, то у случайной величины, распределенной по закону Пуассона, всегда положительны и асимметрия и эксцесс.