- •1. Понятие активной среды; условия усиления оптического излучения в активной среде, коэффициент усиления. Резонаторы, их роль в работе лазеров.
- •1. Полупроводниковый инжекционный лазер; условия достижения инверсной населенности в области p-n перехода, условия усиления и генерации в лазерах на p-n переходах.
- •1. Лазеры с распределенной обратной связью (рос-лазеры), лазеры с распределенным брэговским отражением (рбо-лазеры).
- •1. Квантовый генератор (лазер); условия генерации оптического излучения в квантовом генераторе- (условия самовозбуждения:-баланс амплитуд, согласование фаз)
- •2. Акустооптический модулятор (аом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •1. Полупроводниковый инжекционный лазер; условия достижения инверсной населенности в области p-n перехода, условия усиления и генерации в лазерах на p-n переходах.
- •2. Электрооптический модулятор (эом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •2. Акустооптический модулятор (аом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •1. Источники излучения в ио – полупроводниковые лазеры, светодиоды (требования к характеристикам излучения)
- •2. Полупроводниковый инжекционный лазер; условия достижения инверсной населенности в области p-n перехода, условия усиления и генерации в лазерах на p-n переходах.
- •2. Лазеры с распределенной обратной связью (рос-лазеры), лазеры с распределенным брэговским отражением (рбо-лазеры).
- •1. Структура активных элементов полупроводниковых ис на мдп (моп) транзисторах: -структура мдп-транзистора (основной активный элемент ис).
- •2. Понятие активной среды; условия усиления оптического излучения в активной среде, коэффициент усиления. Резонаторы, их роль в работе лазеров.
- •2. Электрооптический модулятор (эом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •1. Акустооптический модулятор (аом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •1. Полупроводниковый инжекционный лазер; условия достижения инверсной населенности в области p-n перехода, условия усиления и генерации в лазерах на p-n переходах.
- •2. Акустооптический модулятор (аом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •2. Электрооптический модулятор (эом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •1. Определение интегральной схемы (ис). Критерий оценки сложности ис.
- •2. Лазеры с распределенной обратной связью (рос-лазеры), лазеры с распределенным брэговским отражением (рбо-лазеры).
- •1. Полупроводниковый инжекционный лазер; условия достижения инверсной населенности в области p-n перехода, условия усиления и генерации в лазерах на p-n переходах.
- •2. Источники излучения в ио – полупроводниковые лазеры, светодиоды (принцип работы, требования к характеристикам излучения)
- •1. Понятие активной среды; условия усиления оптического излучения в активной среде, коэффициент усиления. Резонаторы, их роль в работе лазеров.
- •1. Лазеры с распределенной обратной связью (рос-лазеры), лазеры с распределенным брэговским отражением (рбо-лазеры).
- •1. Полупроводниковый инжекционный лазер; условия достижения инверсной населенности в области p-n перехода, условия усиления и генерации в лазерах на p-n переходах.
- •2. Акустооптический модулятор (аом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •1. Полупроводниковый инжекционный лазер; условия достижения инверсной населенности в области p-n перехода, условия усиления и генерации в лазерах на p-n переходах.
- •2. Электрооптический модулятор (эом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •1. Электрооптический модулятор (эом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •5.1. Рекомендуемая литература
2. Акустооптический модулятор (аом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
Акустооптическим модулятором (АОМ) является устройство, используемое для управления мощностью, частотой или пространственным направлением лазерного луча при помощи электрического управляющего сигнала
Билет№24.
1. Полупроводниковый инжекционный лазер; условия достижения инверсной населенности в области p-n перехода, условия усиления и генерации в лазерах на p-n переходах.
Полупроводниковый лазер, полупроводниковый квантовый генератор, лазер с полупроводниковым кристаллом в качестве рабочего вещества. В Полупроводниковый лазер, в отличие от лазеров др. типов, используются излучательные квантовые переходы не между изолированными уровнями энергии атомов, молекул и ионов, а между разрешенными энергетическими зонами кристалла
В Полупроводниковый лазер применяют следующие методы накачки: 1) инжекция носителей тока через р—n-переход (см. Электронно-дырочный переход), гетеропереход или контакт металл — полупроводник (инжекционные лазеры); 2) накачка пучком быстрых электронов; 3) оптическая накачка; 4), накачка путём пробоя в электрическом поле. Наибольшее развитие получили Полупроводниковый лазер первых двух типов.
Для наблюдения люминесценции необходимо применить какой-либо способ возбуждения (накачки) кристалла, т. е. способ генерации избыточных электронно-дырочных пар (светом, быстрыми электронами или электрическим полем). При малой скорости образования избыточных электронно-дырочных пар излучательная рекомбинация носит беспорядочный (спонтанный) характер и используется в нелазерных полупроводниковых источниках света (см. Светоизлучающий диод). Чтобы получить генерацию когерентного излучения, т. е. лазерный эффект, необходимо создать особое состояние люминесцирующего кристалла — состояние с инверсией населённостей.
Инверсия населённостей в полупроводниках. Оптическое квантовое усиление в полупроводнике может наблюдаться в том случае, если зона проводимости вблизи её дна Ec заполнена электронами в большей степени, чем валентная зона вблизи её потолка Eu. Преобладание числа переходов с испусканием квантов над переходами с их поглощением обеспечивается тем, что на верхних уровнях находится больше электронов, чем на нижних, тогда как вероятности вынужденных переходов в обоих направлениях одинаковы. Заполнение зон принято описывать с помощью т. н. квазиуровней Ферми, отделяющих состояния с вероятностью заполнения уровней больше 1/2 от состояний с вероятностью заполнения меньше 1/2. Если и — квазиуровни Ферми для электронов и дырок, то условие инверсии населённостей относительно переходов с энергией hn (где n — частота излучения)
2. Электрооптический модулятор (эом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
Электрооптический модулятор (ЭОМ)- устройство, которое можно использовать для контроля мощности, фазы или поляризации лазерного луча с помощью электрического сигнала. Обычно он содержит одну или две ячейки Поккельса и дополнительные оптические элементы - поляризаторы. Различные виды ячеек Поккельса показаны на рисунке. Принцип работы основан на линейном электрооптическом эффекте (также называемом эффектом Поккельса), т.е. изменение показателя преломления в нелинейном кристалле под действием электрического поля, пропорционального напряженности поля.
Различные типы ячеек Поккельса
Часто используемые кристаллы для ЭОМ:
дидейтерофосфат калия KD2PO4 (KD*P=DKDP),
титанил-фосфат калия KTiOPO4 (KTP),
бета-борат бария BaB2O4 (BBO) (применяется при более высокой средней мощности и / или более высоких частотах переключения), а также ниобат лития (LiNbO3),
танталат лития (LiTaO3),
дигидроген фосфат аммония (NH4H2PO4).
В дополнение к этим неорганическим электрооптическим материалам, существуют также специальные полимерные материалы для модуляторов.
Напряжение, необходимое для изменения фазы световой волны на π, называется полуволновым напряжением (Vπ). Для ячейки Поккельса, как правило, это обычно сотни или даже тысячи вольт, так что требуются высоковольтные усилители. Подходящие электронные схемы могут переключаться со значительных напряжения в течение нескольких наносекунд, что позволяет использовать ЭОМ как быстрые оптические переключатели. В других случаях достаточно модуляции с меньшим напряжением, например, когда требуется лишь небольшая модуляция амплитуды или фазы.
Билет№25.
