- •1. Понятие активной среды; условия усиления оптического излучения в активной среде, коэффициент усиления. Резонаторы, их роль в работе лазеров.
- •1. Полупроводниковый инжекционный лазер; условия достижения инверсной населенности в области p-n перехода, условия усиления и генерации в лазерах на p-n переходах.
- •1. Лазеры с распределенной обратной связью (рос-лазеры), лазеры с распределенным брэговским отражением (рбо-лазеры).
- •1. Квантовый генератор (лазер); условия генерации оптического излучения в квантовом генераторе- (условия самовозбуждения:-баланс амплитуд, согласование фаз)
- •2. Акустооптический модулятор (аом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •1. Полупроводниковый инжекционный лазер; условия достижения инверсной населенности в области p-n перехода, условия усиления и генерации в лазерах на p-n переходах.
- •2. Электрооптический модулятор (эом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •2. Акустооптический модулятор (аом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •1. Источники излучения в ио – полупроводниковые лазеры, светодиоды (требования к характеристикам излучения)
- •2. Полупроводниковый инжекционный лазер; условия достижения инверсной населенности в области p-n перехода, условия усиления и генерации в лазерах на p-n переходах.
- •2. Лазеры с распределенной обратной связью (рос-лазеры), лазеры с распределенным брэговским отражением (рбо-лазеры).
- •1. Структура активных элементов полупроводниковых ис на мдп (моп) транзисторах: -структура мдп-транзистора (основной активный элемент ис).
- •2. Понятие активной среды; условия усиления оптического излучения в активной среде, коэффициент усиления. Резонаторы, их роль в работе лазеров.
- •2. Электрооптический модулятор (эом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •1. Акустооптический модулятор (аом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •1. Полупроводниковый инжекционный лазер; условия достижения инверсной населенности в области p-n перехода, условия усиления и генерации в лазерах на p-n переходах.
- •2. Акустооптический модулятор (аом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •2. Электрооптический модулятор (эом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •1. Определение интегральной схемы (ис). Критерий оценки сложности ис.
- •2. Лазеры с распределенной обратной связью (рос-лазеры), лазеры с распределенным брэговским отражением (рбо-лазеры).
- •1. Полупроводниковый инжекционный лазер; условия достижения инверсной населенности в области p-n перехода, условия усиления и генерации в лазерах на p-n переходах.
- •2. Источники излучения в ио – полупроводниковые лазеры, светодиоды (принцип работы, требования к характеристикам излучения)
- •1. Понятие активной среды; условия усиления оптического излучения в активной среде, коэффициент усиления. Резонаторы, их роль в работе лазеров.
- •1. Лазеры с распределенной обратной связью (рос-лазеры), лазеры с распределенным брэговским отражением (рбо-лазеры).
- •1. Полупроводниковый инжекционный лазер; условия достижения инверсной населенности в области p-n перехода, условия усиления и генерации в лазерах на p-n переходах.
- •2. Акустооптический модулятор (аом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •1. Полупроводниковый инжекционный лазер; условия достижения инверсной населенности в области p-n перехода, условия усиления и генерации в лазерах на p-n переходах.
- •2. Электрооптический модулятор (эом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •1. Электрооптический модулятор (эом), устройство, требования к используемым материалам, принцип работы и основные характеристики.
- •5.1. Рекомендуемая литература
Билеты к экзамену по дисциплине «Интегральные устройства радиоэлектроники»
(МГУПИ, 4-курс, 2016г. осенний семестр)
Билет№1
1. Понятие активной среды; условия усиления оптического излучения в активной среде, коэффициент усиления. Резонаторы, их роль в работе лазеров.
Понятие активной среды - место где происходит действие. Для того чтобы система усиливала падающее электромагнитное поле на частоте перехода необходимо обеспечить условие инверсной населенности энергетических уровней, т.е. такое состояние системы, при котором на верхнем уровне 2 находится большее число частиц, чем на нижнем уровне 1. Вещество, в котором распределение частиц по энергетическим состояниям не является равновесным и хотя бы для одной пары уровней энергии осуществляется инверсия населенностей, называется АКТИВНОЙ СРЕДОЙ. В этом случае результирующая мощность становится положительной, что означает передачу энергии от системы частиц к электромагнитной волне, т.е. усиление этой волны. Инверсное состояние населенностей уровней не удовлетворяет распределению Больцмана и поэтому неустойчиво. Создание и поддержание в течение некоторого времени такого состояния рабочего вещества является одним из основных условий работы любого квантового прибора. Если в среду, находящуюся в инверсном состоянии, извне не поступает энергия, то с течением времени среда переходит в устойчивое, равновесное состояние, определяемое распределением Больцмана при данной температуре. Избыток энергии при таком переходе излучается или безызлучательно перераспределяется внутри системы.
2. Определение предмета " Функциональная акустоэлектроника", основные физические явления и эффекты лежащие в основе работы акустоэлектронных и акустооптических приборов и устройств. Типы объемных и поверхностных (ПАВ) акустических волн, способы их возбуждения и приема.
Непрерывное расширение функций радиоэлектронной аппаратуры (РЭА) приводит к резкому усложнению самих радиоэлектронных систем и, как следствие, к лавиноподобному росту числа активных и пассивных компонентов в системах. Традиционными методами конструирования, в том числе и методом комплексной миниатюризации на основе интегральной электроники, эта проблема не может быть решена. Принципиальное решение проблемы возрастающих количеств элементов систем может быть получено только при полном отбрасывании понятий классической схемотехники и непосредственном использовании основных свойств вещества для выполнения функций системы. В таком случае эти функции выполняются без объединения компонентов в системы и без многократного увеличения их количества. На этих принципах базируется новое направление микроэлектроники, получившее название функциональной электроники. Одной из наиболее бурно развивающихся областей функциональной электроники является акустоэлектроника.
Акустоэлектроника – это направление функциональной микроэлектроники, основанное на использовании пьезоэлектрического эффекта, а также явлений, связанных с взаимодействием электрических полей с волнами акустических напряжений в пьезоэлектрическом полупроводниковом материале. По существу, акустоэлектроника занимается преобразованием акустических сигналов в электрические и электрических в акустические. Обратим внимание на то, что данное определение аналогично определению оптоэлектроники, где речь идет о взаимных преобразованиях оптических и электрических сигналов.
Акустические (звуковые) волны (АВ) высокой частоты (более 20 кГц) — "ультразвук" — уже давно используются в различных областях науки и техники. Два важных свойства АВ — относительно низкая скорость распространения (в 105 раз меньше скорости света), а также простота и высокая эффективность возбуждения в пьезоэлектрических материалах — обусловили их применение в радиотехнике и электронике. Линии задержки на объемных акустических волнах (ОАВ) используются в радиотехнике многие десятки лет. Не менее хорошо известны и другие устройства, использующие ОАВ в пьезоэлектрических материалах, — кварцевые резонаторы для стабилизации частоты. Оба этих устройства представляют собой широко известные примеры применения АВ (ультразвука) в радиоэлектронных системах обработки и передачи информационных сигналов.
В акустоэлектронике используются ультразвуковые волны как объемные (продольные и сдвиговые), так и поверхностные, которые имеют ряд преимуществ перед объемными, прежде всего — малые потери при преобразовании сигналов, доступность волнового фронта и разнообразие взаимодействий акустических волн в кристаллах.
Акустоэлектроникой в узком смысле этого слова с начала 1960-х годов стали называть исследование эффектов, связанных со взаимодействием АВ со свободными электронами в твердых телах. К этим эффектам относятся:
"Электронное" поглощение АВ.
Изменение скорости АВ из-за взаимодействия с электронной плазмой в твердом теле.
"Акустоэлектрический" эффект — увлечение электронов АВ и, как следствие, появление постоянного электрического напряжения или постоянного электрического тока в направлении распространения АВ.
Билет№2
