- •97.Особенности метаболизма эритроцитов Образование и обезвреживание активных форм кислорода в эритроцитах. Нарушение активности глюкозо-6 фдг. Развитие гемолитической анемии.
- •98.Биосинтез гема. Нарушение биосинтеза гема. Порфирии.
- •99.Гемоглобинопатии. Молекулярные основы серповидно-клеточной анемии. Талассемии.
- •101.Гемостаз, понятие. Каскадный механизм гемокоагуляции.
- •102.Причины включения внутреннего и внешнего механизма гемостаза.
- •103.Роль тромбоцитов в гемостазе. Фактор фон Виллебранда и его роль в тромбозе.
- •104. Образование, стабилизация и деградация фибрина
- •106. Противосвертывающая система и ингибиторы ферментов свертывания крови.
- •107.Роль простагландинов и сосудистой стенки в гемостазе
- •108. Тромботические и антитромботические свойства тромбина.
- •110. Порфирины как структурные компоненты хромопротеидов. Порфирии и порфиринурии.
- •112. Биохимия печени. Роль печени в обмене белков, углеводов, липидов.
- •115.Механизм сокращения мышечной ткани. Роль атф в мышечном сокращении. Пути ресинтеза атф в мышечной ткани в анаэробных условиях.
- •116. Биохимические изменения при мышечных дистрофиях. Показатель креатин/креатинин.
- •120. Особенности химического состава нервной ткани. Миелиновые мембраны: особенности состава и структуры.
- •123. Нарушения обмена биогенных аминов. Предшественники катехоламинов и ингибиторы моноаминоксидазы в лечении депрессивных состояний.
99.Гемоглобинопатии. Молекулярные основы серповидно-клеточной анемии. Талассемии.
Гемоглобинопатия — наследственное или врождённое изменение или нарушение структуры белка гемоглобина .Гемоглобинопатии бывают: качественные – когда происходит замена аминокислот в цепи полипептида, количественные – когда замедляется скорость синтеза полипептидных цепей, смешанные – сочетающие в себе изменения обоих видов. В гетерозиготном наследовании клинических проявлений может почти и не быть, в гомозиготном состоянии развивается полная картина заболевания. Изменения структуры гемоглобина могут быть в виде замещения одной или нескольких аминокислот в полипептидной цепи, отсутствия какой-то аминокислоты, увеличения длины цепи и др. Изучено более пятидесяти вариантов патологического строения гемоглобина. При этом происходит нарушение физических и химических свойств эритроцитов, обменных процессов в них. Вследствие этого эритроциты становятся более уязвимыми и склонными к разрушению. Основными симптомами патологии являются: снижение уровня гемоглобина, бледность кожных покровов иногда с цианозом, желтушность кожи и слизистых, увеличение селезенки, гибель плода. Гемоглобинопатии имеют значение такие факторы, как принадлежность к определённым расовым и этническим группам, частота браков между кровными родственниками, миграция населения, заболеваемость тропической малярией.
В настоящее время известно около 300 вариантов НЬА. Некоторые изменения почти не влияют на функцию белка и здоровье человека, другие снижают функцию белка и особенно в экстремальных ситуациях снижают возможность адаптации человека, третьи - вызывают значительные нарушения функций НbА и развитие анемии, что приводит к тяжёлым клиническим последствиям.
1.Замена аминокислоты на поверхности гемоглобина А. Серповидно-клеточная анемия - гомозиготное рецессивное заболевание. В молекуле гемоглобина S (так назван аномальный гемоглобин) мутантными оказались 2 β-цепи, в которых глутамат, высокополярная отрицательно заряженная аминокислота в положении 6 была заменена валином, содержащим гидрофобный радикал. Появление гидрофобной аминокислоты недалеко от начала молекулы способствует возникновению нового центра связывания. В дезоксигемоглобине S имеется участок, комплементарный другому участку таких же молекул, содержащему изменённую аминокислоту. В результате молекулы дезоксигемоглобина начинают "слипаться", образуя удлинённые фибриллярные агрегаты, деформирующие эритроцит и приводящие к образованию аномальных эритроцитов в виде серпа. В оксигемоглобине S комплементарный участок "замаскирован" в результате изменения конформации белка. Недоступность участка препятствует соединению молекул оксигемоглобина S друг с другом. Следовательно, образованию агрегатов HbS способствуют условия, повышающие концентрацию дезоксигемоглобина в клетках (физическая работа, гипоксия, уменьшение рН, условия высокогорья, полёт на самолёте). Так как "серповидные" эритроциты легко разрушаются и плохо проходят через капилляры тканей, они часто закупоривают сосуды и создают тем самым локальную гипоксию. Это повышает концентрацию дезоксигемоглобина S в эритроцитах, скорость образования агрегатов гемоглобина S и ещё большую деформацию эритроцитов. Нарушение доставки О2 в ткани вызывает боли "даже некроз клеток в данной области. При этом заболевании отмечают анемию, прогрессирующую слабость, отставание в развитии и желтуху.
2.Изменения аминокислотного состава в области активного центра гемоглобина. Между гемом и белковой частью гемоглобина существует около 60 межатомных контактов. Большинство мутаций, нарушающих в той или иной мере эти контакты, приводят к развитию гемоглобинопатии и анемии.
Гемоглобин М - вариант гемоглобина А, где в результате мутации в гене α- или β-цепи происходит замена Гис Е7 или Гис F8 тирозином. В результате Fe2+ окисляется в Fe3+ и стабилизируется в этой форме (метгемоглобин). Вместо О2 к Fe3+ присоединяется Н2О. У гетерозиготных людей отмечают цианоз, связанный с нарушением транспорта О2, а гомозиготность по этому гену приводит к летальному исходу.
Гемоглобин Хаммерсмита - вариант гемоглобина А, где в положении D1 вместо фенил-аланина (гидрофобной аминокислоты) находится серии (гидрофильная аминокислота). Фен D1 входит в неполярное окружение тема. Замена его на гидрофильную аминокислоту приводит к нарушению прочности связывания тема с глобином; в "гидрофобный карман", где размещается гем, способна проникать вода, окисляющая Fe2+ до Fe3+, в результате чего развивается анемия.
3.Изменения аминокислотного состава, деформирующие третичную структуру гемоглобина. Во всех нормальных гемоглобинах и в миоглобине в месте пересечения двух α-спиралей В и Е находится аминокислота глицин. Так как глицин вместо радикала содержит атом водорода, в этом месте две спирали плотно прилегают друг к другу. В гемоглобине Ривердейла-Бронкса (вариант гемоглобина А) вместо глицина в положении В6 находится аминокислота аргинин, имеющая объёмный радикал. В результате он не умещается в столь узком пространстве, молекула меняет конформацию и становится нестабильной.
4.Замены аминокислот в области контактов димеров α1β1, α2β2, нарушающие аллостерические регуляторные функции гемоглобина. Почти все варианты гемоглобина А, где происходит замена аминокислот в области контакта димеров проявляют пониженную кооперативность и нарушенное сродство гемоглобина к О2. Так, гемоглобин Кемпси - вариант гемоглобина А, где в положении G1 β-цепи аспарагиновая кислота заменена на аспарагин. В норме аспарагиновая кислота участвует в образовании водородной связи, стабилизирующей дезокси-гемоглобин. В результате замены эта связь не образуется, что нарушает стабильность конформации дезоксигемоглобина, и сродство гемоглобина к О2 повышается. У больных развивается анемия с выраженным цианозом.
Талассемии - наследственные заболевания, обусловленные отсутствием или снижением скорости синтеза α- или β-цепей гемоглобина. В результате несбалансированного образования глобиновых цепей образуются тетрамеры гемоглобина, состоящие из одинаковых протомеров. Это приводит к нарушению основной функции гемоглобина - транспорту кислорода к тканям. Нарушение эритропоэза и ускоренный гемолиз эритроцитов и клеток-предшественников при талассемиях приводит к анемии.
При β-талассемии не синтезируются β-цепи гемоглобина. Это вызывает образование нестабильных тетрамеров, содержащих только α-цепи. При этом заболевании в костном мозге из-за преципитации нестабильных α-цепей усиливается разрушение эритробластов, а ускорение разрушения эритроцитов в циркулирующей крови приводит к внутрисосудистому гемолизу. Для образования фетального гемоглобина р-цепи не требуются, поэтому клинически β-талассемия не проявляется до рождения, после чего происходит переключение синтеза HbF на НBА.
В случае α-талассемии недостаток образования α-глобиновых цепей приводит к нарушению образования HbF у плода. Избыточные γ-цепи образуют тетрамеры, называемые гемоглобином Барта. Этот гемоглобин при физиологических условиях имеет повышенное сродство к кислороду и не проявляет кооперативных взаимодействий между протомерами. В результате гемоглобин Барта не обеспечивает развивающийся плод необходимым количеством кислорода, что приводит к тяжёлой гипоксии. При α-талассемии отмечают высокий процент внутриутробной гибели плода.
100.Обмен железа: всасывание, транспорт, депонирование. Нарушения обмена железа: железодефицитная анемия. В организме взрослого человека содержится 3 - 4 г железа, из которых только около 3,5 мг находится в плазме крови. Гемоглобин имеет примерно 68% железа всего организма, ферритин - 27%, миоглобин - 4%, трансферрин — 0,1%. В нейтральной или щелочной среде железо находится в окисленном состоянии - Fe3+, образуя крупные, легко агрегирующие комплексы с ОН-, другими анионами и водой. При низких значениях рН железо восстанавливается и легко диссоциирует. Процесс восстановления и окисления железа обеспечивает его перераспределение между макромолекулами в организме. Ионы железа обладают высоким сродством ко многим соединениям и образуют с ними хелатные комплексы, изменяя свойства и функции этих соединений, поэтому транспорт и депонирование железа в организме осуществляют особые белки. В клетках железо депонирует белок ферритин, в крови его транспортирует белок трансферрин.
А. Всасывание железа в кишечнике.В пище железо в основном находится в окисленном состоянии (Fe3+) и входит в состав белков или солей органических кислот. Освобождению железа из солей органических кислот способствует кислая среда желудочного сока. Наибольшее количество железа всасывается в двенадцатиперстной кишке. Аскорбиновая кислота, содержащаяся в пище, восстанавливает железо и улучшает его всасывание, так как в клетки слизистой оболочки кишечника поступает только Fe2+. В суточном количестве пищи обычно содержится 15 - 20 мг железа, а всасывается только около 10% этого количества. Поступление железа из энтероцитов в кровь зависит от скорости синтеза в них белка апоферритина. Апоферритин "улавливает" железо в энтероцитах и превращается в ферритин, который остаётся в энтероцитах. Таким способом снижается поступление железа в капилляры крови из клеток кишечника. Когда потребность в железе невелика, скорость синтеза апоферритина повышается.Постоянное слущивание клеток слизистой оболочки в просвет кишечника освобождает организм от излишков железа. При недостатке железа в организме апоферритин в энтероцитах почти не синтезируется.
Б. Транспорт железа в плазме крови и его поступление в клетки. В плазме крови железо транспортирует белок трансферрин. Трансферрин - гликопротеин, который синтезируется в печени и связывает только окисленное железо (Fe3+). Поступающее в кровь железо окисляет фермент ферроксидаза, известный как медьсодержащий белок плазмы крови церулоплазмин. Одна молекула трансферрина может связать один или два иона Fe3+, но одновременно с анионом СО32- с образованием комплекса трансферрин-2 (Fe3+-CO32-). В норме трансферрин крови насыщен железом приблизительно на 33%.
Трансферрин взаимодействует со специфическими мембранными рецепторами клеток. В результате этого взаимодействия в цитозоле клетки образуется комплекс Са2+-кальмодулин-ПКС, который фосфорилирует рецептор трансферри-на и вызывает образование эндосомы. АТФ-зависимый протонный насос, находящийся в мембране эндосомы, создаёт кислую среду внутри эндосомы. В кислой среде эндосомы железо освобождается из трансферрина. После этого комплекс рецептор - апотрансферрин возвращается на поверхность плазматической мембраны клетки. При нейтральном значении рН внеклеточной жидкости апотрансферрин изменяет свою конформацию, отделяется от рецептора, выходит в плазму крови и становится способным вновь связывать ионы железа и включаться в новый цикл его транспорта в клетку.
Железо в клетке используется для синтеза железосодержащих белков или депонируется в белке ферригине. Ферритин - олигомерный белок с молекулярной массой 500 кД. Он состоит из тяжёлых (21 кД) и лёгких (19 кД) полипептидных цепей, составляющих 24 протомера. Разный набор прогомеров в олигомере ферритина определяет образование нескольких изоформ этого белка в разных тканях. Ферритин представляет собой полую сферу, внутри которой может содержаться цо 4500 ионов трёхвалентного железа, но обычно содержится менее 3000. Тяжёлые цепи ферритина окисляют Fe2+ в Fe3+, Железо в виде гидроксидфосфата находится в центре сферы, оболочка которой образована белковой частью молекулы. Оно поступает внутрь и освобождается наружу через каналы, пронизывающие белковую оболочку апоферритина, но железо может откладываться и в белковой части молекулы ферритина. Ферритин содержится почти во всех тканях, но в наибольшем количестве в печени, селезёнке и костном мозге. Незначительная часть ферритина экскретируется из тканей з плазму крови. Поскольку поступление ферэитина в кровь пропорционально его содержанию в тканях, то концентрация ферритина в крови - важный диагностический показатель запасов железа в организме при железодефидитной анемии.
Железодефицитная анемия может наблюдаться при повторяющихся кровотечениях, беременности, частых родах, язвах и опухолях ЖКТ, после операций на ЖКТ. При железодефицитной анемии уменьшается размер эритроцитов и их пигментация (гипохромные эритроциты малых размеров). В эритроцитах уменьшается содержание гемоглобина, понижается насыщение железом трансферрина, а в тканях и плазме крови снижается концентрация ферритина. Причина этих изменений - недостаток железа в организме, вследствие чего снижается синтез гема и ферритина в неэритроидных тканях и гемоглобина в эритроидных клетках.
Патогенетически развитие железодефицитного состояния можно условно разделить на несколько стадий: 1. прелатентный дефицит железа (недостаточность накопления) - отмечается снижение уровня ферритина и снижение содержания железа в костном мозге, повышена абсорбция железа; 2. латентный дефицит железа (железодефицитный эритропоэз) - дополнительно снижается сывороточное железо, повышается концентрация трансферрина, снижается содержание сидеробластов в костном мозге; 3. выраженный дефицит железа = железодефицитная анемия - дополнительно снижается концентрация гемоглобина, эритроцитов и гематокрит.
Пациенты отмечают общую слабость, недомогание, снижение работоспособности, извращение вкуса, сухость и пощипывание языка, нарушение глотания с ощущением инородного тела в горле, сердцебиение, одышка. В общем анализе крови при ЖДА будут регистрироваться снижение уровня гемоглобина и эритроцитов. Умеренная эритроцитопения может проявляться при Hb <98 г/л, однако снижение эритроцитов <2·1012/л для ЖДА не характерно. При ЖДА будут регистрироваться изменения морфологических характеристик эритроцитов и эритроцитарных индексов, отражающих количественно морфологические характеристики эритроцитов.
Программа лечения железодефицитной анемии: устранение причины железодефицитной анемии;лечебное питание;ферротерапия;профилактика рецидивов. Больным железодефицитными анемиями рекомендуется разнообразная диета, включающая мясные продукты (телятина, печень) и продукты растительного происхождения (бобы, сою, петрушку, горох, шпинат, сушеные абрикосы, чернослив, гранаты, изюм, рис, гречневую крупу, хлеб). Согласно рекомендациям, разработанным ВОЗ, при назначении препаратов железа предпочтение отдают препаратам, содержащим двухвалентное железо.
