Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ботаническая география с основами экологии растений.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.21 Mб
Скачать

5.3 Температура

Жизнедеятельность любого вида протекает в определенных интервалах температур. При этом прослеживаются зоны оптимума, минимума и максимума. В зоне минимума или максимума происходит затухание деятельности организма. В первом случае низкие температуры (холод), а во втором - высокие (жара) приводят к нарушению его жизненных процессов. За пределами крайних температур лежит летальная зона, в которой наступает необратимый процесс отмирания растения. Следовательно, температуры определяют границы жизни.

Вследствие неподвижного образа жизни высшие растения выработали большую выносливость к суточным и сезонным (годовым) колебаниям температур. Многие лесообразующие породы нашей тайги - сосна сибирская, лиственница даурская (Larix dahurica) и др. - выдерживают понижения температуры до - 50 °С и ниже и летнее тепло до 25 °С и выше. Годовая амплитуда достигает 75 °С, а иногда 85...90 °С. Виды растений, выдерживающие большие перепады температур, называют эвритермными (от греч. eurys + therme - тепло) в отличие от стенотермных.

Дифференциация тепла на нашей планете - основа широтной зональности и высотной поясности растительности и почв. Вследствие уменьшения от экватора к полюсам высоты солнцестояния и угла падения лучей изменяется количество тепла. Так, среднегодовая температура около экватора составляет 26,2 °С, возле 30 °с. ш. она уже равна 20,3 °С, а при 60° с. ш. снижается до - 1 °С.

Помимо среднегодовой температуры данной местности, важное значение в жизни организмов имеют наиболее высокая и наиболее низкая температуры (абсолютный максимум и абсолютный минимум), наблюдаемые в данной климатической зоне, а также средняя температура самого теплого и самого холодного месяца. Так, продолжительность вегетационного периода в тундре (т. е. выше 70° с. ш.) составляет всего полтора - два с половиной месяца при средней температуре 10...12 °С.

Тайга, иначе зона хвойных лесов, имеет вегетационный период три - пять месяцев, среднюю температуру 14.. Л6 °С. В южной части зоны, где преобладают хвойно-широколиственные леса, вегетация длится четыре-пять месяцев, средняя температура составляет 15... 16 °С. В зоне широколиственных лесов (40...50° с. ш.) вегетационный период - пять-шесть месяцев, средняя температура 16...18 °С. Резким контрастом описанным зонам выступает зона дождевых тропических лесов (0...15° с. и ю. ш.). Вегетационный период здесь круглогодичный со средней температурой 25...28 °С и часто не дифференцирован на сезоны. Исключительно важная особенность тропических районов в том, что разница между средними температурами самого теплого и самого холодного месяца менее контрастна, чем суточные колебания.

Рост растений непосредственно связан с температурным фактором. Зависимость отдельных видов от температуры колеблется в широких пределах. Четко различаются термофильные (от греч. therme + philia - любовь) растения и их антиподы - холодовыносливые, или криофильные (от греч. kryos - холод). А. Декандоль (1885) выделял группы гекистотермных, микротермных, мезотермных и мегатермных растений (от греч. gekisto - холод, mikros - малый, mesos - средний, megas - большой).

Перечисленные группы растений по отношению к температуре - комплексные, при их выделении учитывают и отношение растений к влаге. Дополнением к данной классификации можно считать выделение растений криофитов и психрофитов (от греч. psychros - холод + phyton) - гекистотермов и частично микротермов, требующих различных режимов увлажнения. Криофиты произрастают в холодных сухих условиях, а психрофиты - это холодостойкие растения влажных почв.

Не менее наглядно влияние температур на распространение отдельных видов растений и их группировок. Давно уже установлена связь географического распространения отдельных видов с изотермами. Как известно, виноград созревает в пределах изотермы со средней температурой в течение шести месяцев (апрель - сентябрь) 15 °С. Распространение дуба черешчатого на север ограничено годовой изотермой 3 °С; северная граница плодоношения финиковой пальмы совпадает с годовой изотермой 18... 19 °С.

В целом ряде случаев распространение растений обусловлено не только температурами. Так, изотерма 10 °С проходит с запада на восток через Ирландию, Германию (Карлсруэ), Австрию (Вена), Украину (Одесса). Названные местности имеют достаточно различный видовой состав природного растительного покрова и представляют возможность интродукции и возделывания разнообразного набора культур. В Ирландии часто не вызревают зерновые культуры. В Германии и Ирландии не вызревают многие тыквенные (арбузы - Citrullus vulgaris, дыни), хотя в открытом грунте произрастают камелии (Camella) и пальмы. В Карлсруэ в открытом грунте растут плющ и падуб (Ilex), иногда вызревает и виноград. В районе Одессы возделывают дыни и арбузы, но плющ и камелии не выдерживают низких температур зимы. Таких примеров можно привести много.

Таким образом, средние температуры в отрыве от других факторов среды не могут служить надежным показателем (индикатором) возможности интродукции и возделывания интересующей нас культуры. Суть в том, что разные виды растений характеризуются неодинаковой продолжительностью вегетационного периода. Поэтому в отношении температуры необходимо учитывать как продолжительность периода благоприятных температур для нормального развития растений, так и время наступления и продолжительность действия минимальных температур (то же в отношении максимальных).

В экологической и растениеводческой литературе для оценки тепловых ресурсов вегетационного периода широко используют сумму активных температур. Она служит хорошим показателем при оценке потребности растений в тепле и дает возможность определить район возделывания той или иной сельскохозяйственной культуры. Сумма активных температур состоит из суммы положительных среднесуточных температур за период, когда она выше 10 °С. В районах, где сумма активных температур равна 1000...1400 °С, можно возделывать ранние сорта картофеля, корнеплоды; где эта сумма достигает 1400...2200 °С, - хлебные злаки, картофель, лен и др.; сумма активных температур 2200...3500 °С соответствует зоне интенсивного плодоводства; при сумме этих температур более 4000 °С успешно возделывание субтропических многолетников.

Организмы, жизнедеятельность которых и температура тела зависят от тепла, поступающего из окружающей среды, называют пойкилотермными (от греч. poikilos - различный). К ним относят все растения, микроорганизмы, беспозвоночных животных и некоторые группы хордовых. Температура тела пойкилотермных организмов зависит от внешней среды. Вот почему экологическая роль тепла в жизни всех систематических групп растений и названных групп животных имеет первостепенное значение. Высокоорганизованных животных (птиц и млекопитающих) относят к группе гомойотермных (от греч. homoios - одинаковый), у которых температура тела постоянная, поскольку поддерживается за счет собственного тепла.

Известно, что протопласт клеток живых организмов способен нормально функционировать в интервале температур 0...50 °С. Только организмы, которые имеют специальные приспособления, могут выдерживать указанные экстремальные температуры в течение длительного времени. Физиологи установили оптимальные и критические температуры дыхания и других функций. Оказывается, нижний предел температуры дыхания у зимующих органов (почки, хвоя) - 20... - 25 °С. При повышении температуры интенсивность дыхания возрастает. Температуры свыше 50 °С разрушают белково-липидный комплекс поверхностного слоя цитоплазмы, что приводит к потере клетками осмотических свойств.

В некоторых районах России периодически наблюдается массовая гибель растений от слишком низких температур. Катастрофическое действие последних в наибольшей степени сказывается в малоснежные зимы преимущественно на озимых хлебах. Губительны и внезапные похолодания весной, когда растения трогаются в рост (поздневесенние заморозки). Нередко от холода гибнут не только интродуцированные вечнозеленые древесные, например цитрусовые, но и листопадные растения. Н. Максимов, изучая механизм действия низких температур, пришел к выводу, что причина гибели растений объясняется обезвоживанием цитоплазмы. В межклетниках ткани происходит кристаллизация воды. Кристаллы льда оттягивают воду из клеток и механически повреждают органеллы клеток. Критический момент наступает именно с появлением кристаллов льда внутри клеток.

Выделены природные группы морозоустойчивых растений. К ним можно отнести хвойные вечнозеленые деревья и кустарники, а также бруснику (Vaccinium vitis-idea), вереск и др. Среди травянистых многолетников также выявлено немало морозоустойчивых растений, способных переживать суровую зиму. В период зимнего покоя растения могут выдерживать очень низкие температуры. Так, побеги смородины черной (Ribes nigrum) при медленном снижении температуры до - 253 °С (температура, близкая к абсолютному нулю) могут сохранять жизнеспособность.

Большинство видов растений характеризуются индивидуальными реакциями на температуру. Так, весной прорастание зерновок ржи начинается при 1...2 °С, семян клевера лугового (Trifolium pratense) - при 1 °С, люпина желтого (Lupinus luteus) - при 4...5, риса - при 10...12 °С. Оптимальные температуры для вызревания семян этих культур составляют соответственно 25, 30, 28, 30...32 °С.

Для нормального роста и развития растений необходима соответствующая температура окружающей среды для надземных и подземных органов. Например, лен нормально развивается при температуре корня примерно в два раза ниже (10 °С), чем надземных органов (22 °С). В ходе онтогенеза потребность растений в тепле заметно меняется. Значительно варьирует температура органов тела растения и в зависимости от местонахождения (почва, воздух) и ориентировки по отношению к солнечным лучам (рис. 14). Экспериментально установлено, что прорастание семян рапса (Brassica napus), сурепицы (В. campestrts), пшеницы, овса, ячменя, клевера, люцерны и других растений наблюдается при температуре 0...2 °С, тоща как для появления всходов требуются более высокие температуры (3...5 °С).

Рис. 14. Температура (°С) разных органов растений: А - новосиверсии (Novosiversia glacialis), по Б. Тихомирову; Б - пролески сибирской (Scilla sibiriati, по Т. Горышиной, а - подстилка, б - почва

На многих видах континентальных растений благоприятно сказывается суточный термопериодизм, когда амплитуда ночных и дневных температур составляет 5... 15° С. Суть его заключается в том, что многие растения более успешно развиваются при пониженных ночных температурах. Например, томаты лучше развиваются, если дневная температура воздуха достигает 26° С, а ночная температура 17...18° С. Опытные данные свидетельствуют также, что растениям умеренных широт для нормального онтогенетического развития необходимы также осенние пониженные температуры - сезонный термопериодизм.

Температурный фактор влияет на растения на всех этапах их роста и развития. Причем в разные периоды каждый вид растений нуждается в определенных температурных условиях. Для большинства однолетних растений, например ячменя, овса и других, прослеживается общая закономерность: на ранних этапах развития температура должна быть ниже, чем на более поздних.

Мегатермные растения тропического происхождения, например сахарный тростник (Saccharum officinarum), нуждаются в высоких температурах в течение всей жизни. Наибольшей выносливостью к сверхвысоким температурам отличаются растения жарких и сухих районов - эуксерофиты, а также многие суккуленты, например Кактусовые и Толстянковые (Crassulaceae). Это свойственно и растениям засоленных, особенно сульфидами и хлоридами, почв. Указанные виды, как показал еще X. Люденгорд (1925, 1937), сохраняют жизнеспособность даже при 70 °С. Хорошо переносят высокие температуры сильно обезвоженные семена и плоды. Именно на данном свойстве основан известный метод борьбы с возбудителем пыльной головни пшеницы (Ustilago trtttci). При термообработке пораженных семян гриб, будучи стенотермным, погибает, тоща как зародыш зерновки остается жизнеспособным.

Труднее решить вопрос о влиянии температуры на изменение структуры самого растения, его морфологию. Наблюдения в природе и экспериментальные сведения дают различные объяснения. В самом деле, такое приспособление, как сильное опушение почечных чешуи и листьев, представляется комплексным, оно служит защитой не только от яркого света, но и от высоких температур, а также от излишнего испарения влаги. Яркий блеск глянцевитых листьев, параллельное расположение листовой пластинки к солнечным лучам, войлочное опушение - все это, несомненно, предотвращает перегрев листа, а также излишнюю транспирацию.

Основатель экологии растений Е. Варминг (1895) наглядно продемонстрировал влияние температуры на формирование приземистых и розеточных форм растений в Арктике и в высокогорьях альпийского и субнивального поясов, т. е. у самой границы вечных снегов. Речь идет не только о травянистых бесстебельных, розеточных вроде девясила корнеглавого (Inula rhizocephala), но и о древесных жизненных формах - березе карликовой, можжевельнике туркестанском (Juniperus turcestanica), кедровом стланике и пр. Стелющиеся и подушечные формы растений, например минуартия арктическая (Minuartia arctica), наиболее приспособлены к условиям жизни у самой поверхности почвы под прикрытием снежного покрова. Когда снега нет, в припочвенном слое воздуха на высоте до 15...20 см сохраняется наиболее высокая температура и сила ветра минимальна. К тому же внутри "подушки", формируемой растением, создается особый микроклимат, и колебания температур здесь гораздо менее выражены, чем вне ее. На развитие приземистых форм температурный фактор может действовать и непосредственно, и косвенно - вследствие нарушения водоснабжения и минерального питания.

Наиболее велика роль прямого влияния температур в процессе геофилизации растений. Под геофилизацией понимают погружение нижней (базальной) части растения в почву (сначала гипокотиля, затем эпикотиля, первого междоузлия и т. д.). Данный феномен свойствен преимущественно покрытосеменным растениям. Именно в ходе их исторического развития геофилизация играла видную роль в трансформации жизненных форм от деревьев до трав. С погружением в почву основания побегов интенсивно развивается система придаточных корней, корневищ, столонов и других органов вегетативного размножения. Геофилизация была необходимой предпосылкой появления разнообразных подземных органов растений, особенно органов вегетативного размножения. Указанное дало покрытосеменным большие преимущества в борьбе за существование, за господство на континентах Земли.

В онтогенезе многих покрытосеменных геофилизация растений осуществляется при помощи особых втягивающих (контрактильных) корней. Интересные экспериментальные исследования по геофилизации провел П. Лисицын. Он выяснил, что втягивание в почву базальной части растения распространено гораздо шире, чем ранее предполагалось (рис. 15). У озимых сельскохозяйственных культур геофилизация улучшает условия зимовки, у яровых, например гречихи, - условия водоснабжения.

Рис. 15. Геофилизация (втягивание в почву) подсемядольного колена клевера лугового (Trifolium pratense), по П. Лисицину: а - поверхность почвы; б - глубина втягивания