- •Что называется повреждаемостью?
- •Опишите кратковременные испытания на растяжение.
- •Что такое технологическая повреждаемость?
- •Что такое длительная пластичность?
- •Назовите основные виды повреждений.
- •Что представляет собой термическая усталость?
- •9.Проанализировать жаростойкость серого чугуна и пути ее повышения. Рассмотреть условия работы изделия из такого материала, определяя физические, химические и технологические свойства.
- •10. Металлургические дефекты
- •11. Исследования ползучести
- •12. Проанализировать жидкотекучесть хромо-никилевого чугуна и пути ее повышения. Рассмотреть влияние химического состава на жидкотекучесть.
- •13. Перечислите основные методы дефектоскопии.
- •14.Определение циклической вязкости
- •15.Проанализировать жидкотекучесть низкоуглеродистой стали и пути ее повышения. Рассмотреть влияние химического состава такого материала на жидкотекучесть.
- •16. Назовите классы повреждений металлов.
- •17. Что называют тепловой и отпускной хрупкости?
- •18. Проанализировать жидкотекучесть серого чугуна (марку сплава выбрать самостоятельно) и пути ее повышения. Рассмотреть влияние химического состава такого материала на его жидкотекучесть.
- •19. Какие виды трещин вы знаете?
- •20. Что такое длительная прочность?
- •21. Определить тип чугуна, рассчитав степень эвтектичности и углеродный эквивалент по химическому составу: 3,3% c; 0,6 % Si; 0,8 % Mn; 0,5 % p; 0,003 % s; 1,5 % Cr; 3,5 % Ni.
- •1. Расчёт степени эвтектичности и углеродного эквивалента:
- •2. Характеристика изучаемого сплава и области его применения в энергетике.
- •22. Что такое окисление и коррозионная повреждаемость?
- •23. Что называют релаксацией?
- •24.Определить тип чугуна, рассчитав степень эвтектичности и углеродный эквивалент по химическому составу: 3,4% с; 1,0% Si; 1,0% Mn; 0,4% p; 0,003% s; 1,0% Cr; 3,5% Ni.
- •25.Особенности коррозионной усталости.
- •26. Опишите влияния способа выплавки и разливки на св-ва жаропрочных материалов.
- •27.Определить тип чугуна, рассчитав степень эвтектичности и углеродный эквивалент по химическому составу: 3,6% с; 2,3% Si; 0,8% Mn; 0,5% p; 0,003% s; 0,1% Cr; 1,0% Ni.
- •28.Как влияют условия эксплуатации на св-ва жаропрочных материалов.
- •29.Проанализируйте металлургические дефекты.
- •30.Найти температурную зависимость удельной теплоемкости железа.
- •31. Влияние величины зерна на свойства жаропрочных сталей и сплавов
- •32. Металлические материалы для нагревательных элементов
- •33. Задачка про потери
- •34.Конструктивная прочность
- •35. Специальные материалы для нагревательных элементов
- •36. Влияние термической обработки на структуру и свойства чугунов
- •37. Запасы прочности
- •38. Огнеупорные материалы и изделия
- •39.Проанализировать влияние термообработки (графитизирующий отжиг) на структуру и свойства чугунов.
- •40. Назовите комплекс необходимых испытаний свойств материалов.
- •41. По каким признакам подразделяют огнеупорные материалы.
- •42. Проанализировать влияние термообработки (сфероидизирующий отжиг) на структуру и свойства чугунов.
- •43. Какие материалы применяют для газотурбинных установок?
- •44. Охарактеризуйте виды конструкционных керамических материалов
- •45. Проанализируйте влияние термической обработки (обезуглероживающий отжиг) на структуру и свойства чугунов
- •46. Дайте характеристику металлов для лопаток
- •47. Какие материалы относят к специальным конструкционным неметаллическим материалам?
- •48.Проанализируйте зависимость технологических показателей механической обработки от структуры у белого чугуна
- •49. Назовите причины аварий труб поверхностей нагрева котлов энергетических блоков
- •50. Какие виды жидкотекучести вам известны?
- •51. Проанализировать зависимости технологических показателей механической обработки от структуры у высокопрочного чугуна
- •52. Какие металлы применяют для валов и цельнокованных роторов
- •53. Как влияют химические элементы на жидкотекучесть железоуглеродистох сплавов?
- •54. Проанализировать зависимости технологических показателей механической обработки от структуры ковкого чугуна.
- •55. Металлы основных деталей статоров
- •56. Что является критерием для контроля жидкотекучести сплавов при использовании клиновидной пробы?
- •57. Проанализировать зависимости технологических показателей механической обработки от структуры серого чугуна.
- •62. Понятие чугуна.
- •63. Структурная классификация чугунов.
- •64. Какие варианты построения диаграммы Fe-c существуют, чем они отличаются?
- •65. Какие фазы и структурные составляющие образуются в железоуглеродистых сплавах?
- •66. Что такое твердость материалов?
- •67. Как определяется и обозначается твердость, измеренная методами Бринелля, Виккерса и Роквелла?
- •68. Какую нагрузку следует принять при испытании твердости по Бриннелю белого, половинчатого и серого чугунов?
- •69.Дайте определение теплоемкости
- •70. Что такое истинная и удельная теплоёмкости? Как они рассчитываются?
- •71. Как температура влияет на изменение теплоёмкости?
- •72. Перерчислите способы измерения теплоёмкости металлов и сплавов
- •73. Для чего проводят термическую обработку?
- •74. Какими параметрами характеризуется процесс термообработки?
- •75. Что такое обрабатываемость?
44. Охарактеризуйте виды конструкционных керамических материалов
К специальным конструкционным материалам относятся прежде всего некоторые тугоплавкие бескислородные соединения, представляющие со-бой соединения металлов с неметаллами с общим условным обозначением МХ: с углеродом – карбиды МС, с азотом – нитриды MN, с бором – бориды МВ, с кремнием – силициды MSi и др. Эта группа материалов обладает ря-дом ценных технических свойств: высокой температурой плавления или раз-ложения, большой твердостью и прочностью, высокой химической стойкостью в агрессивных средах и т.д. Эти материалы получают с использованием керамической технологии и обычно называются керамическими материалами или керметами
Особенности свойств этих керметов:
- низкий коэффициент линейного расширения (в 3 - 5 раз меньше, чем у ста-лей), в связи с чем температурные напряжения в керамических деталях ГТУ меньше, чем в остальных;
низкая удельная плотность (в 2,5 - 3 раза меньше, чем у металлов);
повышенная жаропрочность (σ1200 1/500= 600 МПа);
высокая химическая стойкость, позволяющая применить низкосортные то-плива;
- хрупкость – разрушение при почти полном отсутствии пластической деформации (в деталях не допускаются концентраторы напряжений).
45. Проанализируйте влияние термической обработки (обезуглероживающий отжиг) на структуру и свойства чугунов
Термическая обработка серого чугуна
Термическая обработка серого чугуна это — прежде всего отжиг для снятия напряжений, возникших в отливке вследствие неравномерного остывания. Эти напряжения можно устранить (так же, как и в стали) медленным нагревом до 450—550° С. В зависимости от величины отливки и толщины ее стенок эта температура поддерживается в течение от 1 до 5 ч, после чего следует медленное охлаждение. При таком отжиге никаких структурных изменений не происходит. Полный (смягчающий) отжиг применяется, когда необходимо устранить твердость отбеленных участков (углов или граней) на отливке, которая должна пройти механическую обработку, (разумеется, что путем подбора надлежащего химического состава шихты, режима плавки и всей литейной техники необходимо предупреждать образование таких отбеленных участков). Если они все же образовались, то такой чугун можно смягчить медленным и осторожным нагревом до температуры 800—900° С. После выдержки в течение 2—6 ч (в зависимости от толщины стенок отливки и величины цементитных участков) отливку оставляют в печи для медленного остывания.
Термическая обработка белого чугуна
Термическая обработка белого чугуна заключается в отжиге (называемом иногда томлением).
В зависимости от применяемого процесса получают ковкий чугун с белой (перлитный) или с черной сердцевиной (ферритный). Исходным материалом в том и другом случае служит чугун с химическим составом: 2,3 – 2,5% С; 0,5 – 1,2% Si; 0,5% Мп.
Ковкий чугун с белой сердцевиной получается следующим образом.
Отливки, предназначенные для отжига, загружают в чугунные горшки, а свободное пространство между ними заполняют мелко размолотой, содержащей кислород, железной рудой. Нагревают отливки быстро до температуры 900 – 1000° С, при этой температуре их выдерживают в течение 15—24 ч, в зависимости от толщины, после чего медленно охлаждают (со скоростью около 10°С/в час) до температуры 650° С. Дальнейшее охлаждение может протекать быстрее. В зависимости от величины печи весь процесс длится от 3 до б дней.При отжиге белого чугуна происходит не только распад цементита, но и обезуглероживание поверхности на большую глубину, так что на поверхности образуется один лишь феррит, а в сердцевине — перлит и углерод отжига. Сердцевина также сильно обезуглерожена. Излом такого чугуна — крупнозернистый, блестящий; чугун довольно вязок.
Процесс получения ковкого чугуна с черной сердцевиной аналогичен описанному, но отливки отжигают в нейтральной среде (в песке, а не в руде); поэтому поверхность обезуглероживается незначительно. В изломе эти отливки имеют черный цвет. Охлаждение до температуры 650°С должно быть еще более медленным (около 3°С в час), чтобы не образовался перлит. Ковкий чугун с черной сердцевиной хорошо поддается обработке и его можно изгибать даже в холодном состоянии.
Особым видом ковкого чугуна являются подшипниковые чугуны с химическим составом: около 3,5% С; 0,5% Мп; 1,6% Si. Вкладыш для подшипника, отлитый из этого чугуна в кокиль, отжигают при температуре 860—900° С. Тонко диспергированный углерод (графит) придает этому чугуну хорошие антифрикционные свойства. В некоторых случаях- этот чугун заменяет подшипниковые бронзы.
Сильно обезуглероженные поверхности очень мелких отливок из перлитного ковкого чугуна можно снова науглеродить (цементовать) и закалить. Однако этот способ применяется лишь для самых дешевых изделий.
