- •Барсуков р.В.
- •(Курс лекций) Бийск 2005
- •Акустоэлектроника изучает:
- •Схемы замещения пьезокерамических элементов (резонаторов).
- •Пьезорезонаторы. Параметры и режимы работы.
- •Поверхностные акустические волны
- •Характеристики встречно-штыревых преобразователей
- •Цепи нейтрализации статической емкости преобразователей
- •Линия задержки на пав и ее эквивалентная схема
- •Отражательные решетки
- •Конструкции резонаторов
- •Качество отражательной решетки определяет значение добротности резонатора на пав.
- •Эквивалентная схема одновходового резонатора.
- •Эквивалентная схема двухвходового резонатора.
- •Пьезокерамические трансформаторы
- •Основные типы и конструкции пьезотрансформаторов
- •Свойства простых и модифицированных пьезокерамических материалов для пьезотрансформаторов.
- •Параметры пьезотрансформаторов и методика их расчета
- •Способы управления режимами пьезотрансформаторов
- •Трансверсальные фильтры
- •Устройства цифрового кодирования
- •Радиоидентификация с использованием пав устройств
- •Стабилизированные пав генераторы
- •Пьезоэлектрические двигатели (пэд)
- •Пьезоэлектронные элементы оптических систем
- •Пьезоэлектрические актюаторы.
- •- Микролитография;
- •Пьезоэлектрический Сервоэлемент®
- •Пьезопленка пвдф
- •Пьезополимерные коаксиальные кабели
Цепи нейтрализации статической емкости преобразователей
Входная проводимость ВШП определяется в большей степени статической емкостью преобразователя, которая шунтирует его вход и снижает эффективность работы. Поэтому часто требуется скомпенсировать влияние статической емкости. Наиболее просто это достигается подключением внешней индуктивности последовательно или параллельно электрическому входу ВШП.
|
Рисунок 11 -
Способы нейтрализации входной
статической емкости пьезопреобразователей,
где L – внешняя индуктивность; g и r –
проводимость и сопротивление потерь; |
Резонансная частота получающегося при этом параллельного или последовательного контура, образованного внешней индуктивностью и статической емкостью преобразователя, выбирается равной частоте акустоэлектрического синхронизма.
Выражение для входной проводимости ВШП принимает вид:
для параллельного включения внешней индуктивности и
для последовательного подключения.
Последовательное подключение индуктивности применяется при согласовании ВШП с источником, обладающим малым выходным сопротивлением, т.е. близким к генератору напряжения, а параллельное - с источником, обладающим большим выходным сопротивлением, т.е. близким к генератору тока.
Линия задержки на пав и ее эквивалентная схема
Чаще всего линия задержки ПАВ (ЛЗ ПАВ) представляет собой пьезокристаллическую пластину, на поверхности которой наносится (методом напыления в вакууме) два встречно-штыревых преобразователя, служащие для преобразования подводимой к ним электромагнитной энергии в ПАВ и наоборот (см. рисунок 12).
|
Рисунок 12 - Линия задержки на ПАВ |
Название устройств объясняется тем, что прохождение ПАВ как вдоль преобразователей, так и между ними сопровождается значительной задержкой (до 100 мкс).
Для улучшения функциональных характеристик линий задержек ВШП могут быть с переменным периодом электродной решетки (для расширения полосы пропускания).
Для анализа и расчета ЛЗ ПАВ используют эквивалентную схему. Она составлена на основе электрической эквивалентной схемы Мэзона.
Рисунок 13 - Эквивалентная электрическая схема ЛЗ ПАВ.
Входной и выходной преобразователи ЛЗ ПАВ представлены эквивалентными электрическими шестиполюсниками, характеризуемыми матрицами Y-параметров. Пьезоэлектрический звукопровод между входными и выходными преобразователями представлен на схеме электрическим аналогом - отрезком длинной линии с характеристическим сопротивлением Z0 и длинной l. Отсутствие отражения от краев пьезоподложки учтено тем, что внешние акустические входы преобразователей нагружены на характеристическое сопротивление упругой среды Z0.
Для эквивалентной схемы ЛЗ ПАВ (рис. 13) с использованием граничных условий на внешних акустических входах:
и связи между внутренними акустическими входами через отрезок длинной линии, можно получить матрицу Y параметров:
где
- коэф-т, учитывающий в первом приближении потери при распространении ПАВ в пьезозвукопроводе м-у преобразователями из-за затухания и расхождения ПАВ, разюстировки преобразователей и т.д.
Задержка сигнала
при распространении ПАВ между
преобразователями учитывается в Y12
сомножителем
.
Используя данную модель необходимо помнить, что она не учитывает расхождение ПАВ при распространении вдоль ЛЗ и ВШП.
Исходя из полученных Y параметров можно получить выражения для коэффициентов передачи линии задержки по напряжению и току.
Рисунок 14 - Схема подключения генератора и нагрузки к ЛЗ ПАВ
Так, для схемы включения генератора и нагрузки изображенной на рисунке 14, коэффициенты передачи по напряжению и току с первого входа ЛЗ на ее второй вход имеют вид:
В ЛЗ на ПАВ имеются
отражения от входного и выходного ВШП,
что приводит к искажениям амплитудных
и фазовых характеристик. Для уменьшения
этих искажений применяют низкоомную
нагрузку
и источник с малым внутренним сопротивлением
.
В этом случае режим работы преобразователей
близок короткому замыканию и при этом
ПАВ не отражаются от преобразователей.
Для передачи максимальной мощности через ЛЗ ПАВ очевидны требования согласования генератора и нагрузки с входным и выходным сопротивлением ЛЗ ПАВ.
В первом случае от генератора во входной преобразователь ЛЗ ПАВ передается максимальная мощность сигнала, во втором – в нагрузку передается максимальная мощность, выделяемая приходящей на выходной преобразователь поверхностной акустической волной.
Условие согласования генератора и нагрузки имеет следующий вид:
Yн=(Y22 – Y212/(1/zr+Y11))
Рисунок 15 - Линия задержки на ПАВ с разъюстированным преобразователем.
На рис. 15 показана
ЛЗ ПАВ, у которой один из преобразователей
повернут относительно другого на
некоторый угол
.
Мощность основного сигнала Росн
при малых
падает незначительно. Это уменьшение
можно характеризовать величиной
,
равной
W – апертура излучателя и приемника (длинна полосок ВШП).
