- •Лекция № 1
- •План лекции:
- •История материаловедения.
- •Предмет материаловедения.
- •Тенденции и перспективы развития материаловедения.
- •Структура материалов.
- •Атом. Молекула. Химическая связь.
- •Фазовое состояние вещества.
- •Лекция № 2
- •План лекции:
- •5. Вывод.
- •Металлы.
- •Особенности атомно-кристаллического строения.
- •Понятие об изотропии и анизотропии.
- •Дефекты кристаллического строения.
- •Точеные дефекты.
- •Линейные дефекты.
- •Поверхностные дефекты.
- •Лекция № 3
- •План лекции:
- •6. Вывод.
- •Кристаллизация металлов и сплавов.
- •Механизм и закономерности кристаллизации металлов.
- •Условия получения мелкозернистой структуры.
- •Строение металлического слитка.
- •Аллотропия или полиморфные превращения.
- •Кривая охлаждения железа.
- •Лекция № 4
- •План лекции:
- •4. Вывод.
- •Основные свойства металлов.
- •Механические свойства металлов.
- •Деформация и разрушение.
- •Деформация
- •Растяжение.
- •Сжатие.
- •Лекция № 5
- •План лекции:
- •5. Вывод.
- •Физические свойства.
- •Плотность и температура плавления некоторых металлов.
- •Химические свойства.
- •Стандартные электродные потенциалы металлов.
- •Технологические свойства.
- •1. Литейные свойства.
- •2. Способность материала к обработке давлением.
- •3. Свариваемость.
- •4. Способность к обработке резанием.
- •Эксплуатационные свойства.
- •Лекция № 6
- •План лекции:
- •4. Вывод.
- •Химические методы.
- •Механические методы.
- •Оптические и физические методы.
- •Лекция № 7
- •План лекции:
- •6. Вывод.
- •Понятие о сплавах и методах их получения.
- •Основные понятия в теории сплавов.
- •Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений.
- •Классификация сплавов твердых растворов.
- •Кристаллизация сплавов.
- •7. Вывод.
- •Структуры железоуглеродистых сплавов.
- •Компоненты и фазы железоуглеродистых сплавов.
- •Диаграмма состояния.
- •Диаграмма состояния «Fe – Fe3c».
- •Анализ диаграммы состояния «Fe – Fe3c».
- •Структуры железоуглеродистых сплавов.
- •Лекция № 9
- •Маркировка по госТу.
- •План лекции:
- •12. Вывод.
- •Общие сведения.
- •Классификация чугунов.
- •Диаграмма состояния железо – графит.
- •Процесс графитизации.
- •Влияние состава чугуна на процесс графитизации.
- •Влияние графита на механические свойства отливок.
- •Серый чугун.
- •Строение, свойства, классификация серых чугунов.
- •Высокопрочный чугун с шаровидным графитом.
- •Ковкий чугун.
- •Отбеленные и другие чугуны.
- •Маркировка чугуна по госТу.
- •Условное обозначение марок чугуна
- •Сравнительные показатели механических свойств ковкого чугуна и других машиностроительных материалов
- •Марки антифрикционного чугуна в зависимости от формы включения графита
- •Механические свойства отливок из серого чугуна (по гост 1412—54)
- •Механические свойства отливок из высокопрочного чугуна(по гост 7293—54)
- •Механические свойства отливок из ковкого чугуна (по гост 1215—59)
- •Механические свойства отливок из жаростойкого чугуна (по гост 7769—55)
- •Лекция № 10
- •План лекции:
- •3. Вывод.
- •Общие сведения.
- •Классификация и маркировка сталей. А. Классификация сталей
- •Б. Маркировка сталей
- •Углеродистые стали обыкновенного качества (гост 380).
- •Качественные углеродистые стали
- •Качественные и высококачественные легированные стали
- •Легированные конструкционные стали
- •Легированные инструментальные стали
- •Быстрорежущие инструментальные стали
- •Шарикоподшипниковые стали
- •Лекция № 11
- •План лекции:
- •4. Вывод.
- •Общие сведения.
- •Влияние углерода и примесей на свойства сталей.
- •А. Влияние углерода.
- •Б. Влияние примесей.
- •Углеродистые стали.
- •А. Углеродистые стали обыкновенного качества.
- •Б. Углеродистые качественные конструкционные стали.
- •Лекция № 12
- •План лекции:
- •3. Вывод.
- •Общие сведения.
- •Применение инструментальной углеродистой стали.
- •Лекция № 13
- •План лекции:
- •5. Вывод.
- •Общие сведения.
- •Специальные примеси.
- •Влияние легирующих элементов на превращения в стали. А. Влияние легирующих элементов на превращение перлита в аустенит.
- •Б. Влияние легирующих элементов на превращение переохлажденного аустенита.
- •В. Влияние легирующих элементов на мартенситное превращение
- •Г. Влияние легирующих элементов на преврашения при отпуске.
- •Классификация легированных сталей.
- •Лекция № 14
- •План лекции:
- •4. Вывод.
- •Общие сведения.
- •Классификация конструкционных сталей.
- •А. Цементуемые стали.
- •Б. Улучшаемые стали.
- •В. Высокопрочные стали.
- •Г. Автоматные стали.
- •Д. Подшипниковые стали.
- •Маркировка конструкционных сталей.
- •Лекция № 15
- •План лекции:
- •5. Вывод.
- •Общие сведения.
- •Классификация инструментальных сталей.
- •А. Углеродистые инструментальные стали.
- •Б. Легированные инструментальные стали.
- •В. Быстрорежущие стали.
- •Маркировка инструментальных сталей.
- •Применение инструментальной легированной стали.
- •Лекция № 16
- •План лекции:
- •4. Вывод.
- •Общие сведения.
- •Стали и сплавы с особыми химическими свойствами. А. Коррозионно-стойкие стали и сплавы.
- •Б. Жаростойкие (окалиностойкие) стали и сплавы.
- •В. Жаропрочные стали и сплавы.
- •Стали и сплавы с особыми физическими свойствами.
- •А. Стали и сплавы с заданным температурным коэффициентом линейного расширения.
- •Б. Стали и сплавы с высоким электросопротивлением.
- •Б. Магнитные стали и ставы.
- •Лекция № 17
- •План лекции:
- •5. Вывод.
- •Общие сведения.
- •Быстрорежущие стали.
- •Маркировка быстрорежущих сталей.
- •Применение.
- •Лекция № 18
- •План лекции:
- •3. Вывод.
- •Общие сведения.
- •Твердые сплавы.
- •А. Сплавы группы вк.
- •Б. Сплавы группы тк.
- •В. Сплавы группы ттк.
- •Лекция № 19
- •План лекции:
- •9. Вывод.
- •Общие сведения.
- •Превращения, протекающие, в структуре стали при нагреве и охлаждении.
- •Механизм основных превращений. А. Превращение перлита в аустенит.
- •Б. Рост зерна аустенита.
- •Закономерности превращения.
- •Промежуточное превращение.
- •Превращение аустенита в мартенсит при высоких скоростях охлаждения.
- •Превращение мартенсита в перлит.
- •Виды термической обработки металлов.
- •Лекция № 20
- •План лекции:
- •5. Вывод.
- •Технологические возможности и особенности отжига, нормализации, закалки и отпуска.
- •Отжиг и нормализация. Назначение и режимы.
- •А) Отжиг первого рода.
- •Б) Отжиг второго рода.
- •Закалка. Способы закалки.
- •Охлаждение при закалке.
- •Способы закалки.
- •1. Закалка в одном охладителе (v1).
- •2. Закалка в двух сферах или прерывистая (v2).
- •3. Ступенчатая закалка (v3).
- •4. Изотермическая закалка (v4).
- •5. Закалка с самоотпуском.
- •Отпуск. Отпускная хрупкость.
- •Отпускная хрупкость
- •Лекция № 21
- •План лекции:
- •4. Вывод.
- •Общие сведения.
- •Назначение и технология видов химико-термической обработки: цементации, азотирования, нитроцементации и диффузионной металлизации. А. Цементация
- •Б. Цементация в твердом карбюризаторе.
- •В. Газовая цементация.
- •Г. Структура цементованного слоя.
- •Д. Термическая обработка после цементации.
- •Е. Азотирование
- •Ж. Цианирование и нитроцементация
- •З. Диффузионная металлизвция
- •Лекция № 22
- •План лекции:
- •5. Вывод.
- •Некоторые сведения об истории медных сплавов.
- •Сплавы на основе меди.
- •А. Латунь
- •А. Бронза
- •Маркировка сплавов на основе меди.
- •4. Вывод.
- •Общие сведения.
- •4. Вывод.
- •Общие сведения.
Превращение мартенсита в перлит.
Имеет место при нагреве закаленных сталей. Превращение связано с диффузией углерода.
Мартенсит закалки неравновесная структура, сохраняющаяся при низких температурах. Для получения равновесной структуры изделия подвергают отпуску.
При нагреве закаленной стали происходят следующие процессы.
При нагреве до 2000С происходит перераспределение углерода в мартенсите. Образуются пластинки – карбидов толщиной несколько атомных диаметров. На образование карбидов углерод расходуется только из участков мартенсита, окружающих кристаллы выделившихся карбидов. Концентрация углерода на этих участках резко падает, тогда, как удаленные участки сохраняют концентрацию углерода. В стали присутствуют карбиды и два - твердых раствора мартенсита (с высокой и низкой концентрацией углерода). Такой тип распада мартенсита называется прерывистым. Скорость диффузии мала, карбиды не увеличиваются, распад мартенсита сопровождается зарождением новых карбидных частиц. Таким образом имеем структуру с неравномерным распределением углерода – это мартенсит отпуска. При этом несколько снижается тетрагональность решетки.
При нагреве до 3000С идет рост образовавшихся карбидов. Карбиды выделяются из мартенсита, и он обедняется углеродом. Диффузия углерода увеличивается, и карбиды растут в результате притока углерода из областей твердого раствора с высокой его концентрацией. Кристаллическая решетка карбидов когерентно связана с решеткой мартенсита.
В высокоуглеродистых сталях аустенит остаточный превращается в мартенсит отпуска. Наблюдается снижение тетрагональности решетки и внутренних напряжений. Структура – мартенсит отпуска.
При нагреве до 4000С весь избыточный углерод выделяется из . Карбидные частицы полностью обособляются, приобретают строение цементита, и начинают расти. Форма карбидных частиц приближается к сферической.
Высокодисперсная смесь феррита и цементита называется троостит отпуска;
При нагреве выше 4000С изменение фазового состава не происходит, изменяется только микроструктура. Имеет место рост и сфероидизация цементита. Наблюдается растворение мелких и рост крупных карбидных частиц.
При температуре 550…6000С имеем сорбит отпуска. Карбиды имеют зернистое строение. Улучшаются, свойства стали.
При температуре 650…7000С получают более грубую ферритно - цементитную смесь – перлит отпуска (зернистый перлит).
Виды термической обработки металлов.
Различают следующие виды термической обработки:
1. Отжиг 1 рода – возможен для любых металлов и сплавов.
Его проведение не обусловлено фазовыми превращениями в твердом состоянии.
Нагрев, при отжиге первого рода, повышая подвижность атомов, частично или полностью устраняет химическую неоднородность, уменьшает внутреннее напряжения.
Основное значение имеет температура нагрева и время выдержки. Характерным является медленное охлаждение
Разновидностями отжига первого рода являются:
диффузионный;
рекристаллизационный;
отжиг для снятия напряжения после ковки, сварки, литья.
2. Отжиг II рода – отжиг металлов и сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении.
Проводится для сплавов, в которых имеются полиморфные или эвтектоидные превращения, а также переменная растворимость компонентов в твердом состоянии.
Проводят отжиг второго рода с целью получения более равновесной структуры и подготовки ее к дальнейшей обработке. В результате отжига измельчается зерно, повышаются пластичность и вязкость, снижаются прочность и твердость, улучшается обрабатываемость резанием.
Характеризуется нагревом до температур выше критических и очень медленным охлаждением, как правило, вместе с печью.
3. Закалка – проводится для сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении, с целью повышение твердости и прочности путем образования неравновесных структур (сорбит, троостит, мартенсит).
Характеризуется нагревом до температур выше критических и высокими скоростями охлаждения.
4. Отпуск – проводится с целью снятия внутренних напряжений, снижения твердости и увеличения пластичности и вязкости закаленных сталей.
Характеризуется нагревом до температуры ниже критической А. Скорость охлаждения роли не играет. Происходят превращения, уменьшающие степень неравновесности структуры закаленной стали.
Термическую обработку подразделяют на предварительную и окончательную.
Предварительная – применяется для подготовки структуры и свойств материала для последующих технологических операций (для обработки давлением, улучшения обрабатываемости резанием).
Окончательная – формирует свойство готового изделия.
Вывод.
Свойства сплава зависят от его структуры. Основным способом, позволяющим изменять структуру, а, следовательно, и свойства является термическая обработка.
Основы термической обработки разработал Чернов Д.К.. В дальнейшем они развивались в работах Бочвара А.А., Курдюмова Г.В., Гуляева А.П.
Термическая обработка представляет собой совокупность операций нагрева, выдержки и охлаждения, выполняемых в определенной последовательности при определенных режимах, с целью изменения внутреннего строения сплава и получения нужных свойств.
