- •Лекция № 1
- •План лекции:
- •История материаловедения.
- •Предмет материаловедения.
- •Тенденции и перспективы развития материаловедения.
- •Структура материалов.
- •Атом. Молекула. Химическая связь.
- •Фазовое состояние вещества.
- •Лекция № 2
- •План лекции:
- •5. Вывод.
- •Металлы.
- •Особенности атомно-кристаллического строения.
- •Понятие об изотропии и анизотропии.
- •Дефекты кристаллического строения.
- •Точеные дефекты.
- •Линейные дефекты.
- •Поверхностные дефекты.
- •Лекция № 3
- •План лекции:
- •6. Вывод.
- •Кристаллизация металлов и сплавов.
- •Механизм и закономерности кристаллизации металлов.
- •Условия получения мелкозернистой структуры.
- •Строение металлического слитка.
- •Аллотропия или полиморфные превращения.
- •Кривая охлаждения железа.
- •Лекция № 4
- •План лекции:
- •4. Вывод.
- •Основные свойства металлов.
- •Механические свойства металлов.
- •Деформация и разрушение.
- •Деформация
- •Растяжение.
- •Сжатие.
- •Лекция № 5
- •План лекции:
- •5. Вывод.
- •Физические свойства.
- •Плотность и температура плавления некоторых металлов.
- •Химические свойства.
- •Стандартные электродные потенциалы металлов.
- •Технологические свойства.
- •1. Литейные свойства.
- •2. Способность материала к обработке давлением.
- •3. Свариваемость.
- •4. Способность к обработке резанием.
- •Эксплуатационные свойства.
- •Лекция № 6
- •План лекции:
- •4. Вывод.
- •Химические методы.
- •Механические методы.
- •Оптические и физические методы.
- •Лекция № 7
- •План лекции:
- •6. Вывод.
- •Понятие о сплавах и методах их получения.
- •Основные понятия в теории сплавов.
- •Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений.
- •Классификация сплавов твердых растворов.
- •Кристаллизация сплавов.
- •7. Вывод.
- •Структуры железоуглеродистых сплавов.
- •Компоненты и фазы железоуглеродистых сплавов.
- •Диаграмма состояния.
- •Диаграмма состояния «Fe – Fe3c».
- •Анализ диаграммы состояния «Fe – Fe3c».
- •Структуры железоуглеродистых сплавов.
- •Лекция № 9
- •Маркировка по госТу.
- •План лекции:
- •12. Вывод.
- •Общие сведения.
- •Классификация чугунов.
- •Диаграмма состояния железо – графит.
- •Процесс графитизации.
- •Влияние состава чугуна на процесс графитизации.
- •Влияние графита на механические свойства отливок.
- •Серый чугун.
- •Строение, свойства, классификация серых чугунов.
- •Высокопрочный чугун с шаровидным графитом.
- •Ковкий чугун.
- •Отбеленные и другие чугуны.
- •Маркировка чугуна по госТу.
- •Условное обозначение марок чугуна
- •Сравнительные показатели механических свойств ковкого чугуна и других машиностроительных материалов
- •Марки антифрикционного чугуна в зависимости от формы включения графита
- •Механические свойства отливок из серого чугуна (по гост 1412—54)
- •Механические свойства отливок из высокопрочного чугуна(по гост 7293—54)
- •Механические свойства отливок из ковкого чугуна (по гост 1215—59)
- •Механические свойства отливок из жаростойкого чугуна (по гост 7769—55)
- •Лекция № 10
- •План лекции:
- •3. Вывод.
- •Общие сведения.
- •Классификация и маркировка сталей. А. Классификация сталей
- •Б. Маркировка сталей
- •Углеродистые стали обыкновенного качества (гост 380).
- •Качественные углеродистые стали
- •Качественные и высококачественные легированные стали
- •Легированные конструкционные стали
- •Легированные инструментальные стали
- •Быстрорежущие инструментальные стали
- •Шарикоподшипниковые стали
- •Лекция № 11
- •План лекции:
- •4. Вывод.
- •Общие сведения.
- •Влияние углерода и примесей на свойства сталей.
- •А. Влияние углерода.
- •Б. Влияние примесей.
- •Углеродистые стали.
- •А. Углеродистые стали обыкновенного качества.
- •Б. Углеродистые качественные конструкционные стали.
- •Лекция № 12
- •План лекции:
- •3. Вывод.
- •Общие сведения.
- •Применение инструментальной углеродистой стали.
- •Лекция № 13
- •План лекции:
- •5. Вывод.
- •Общие сведения.
- •Специальные примеси.
- •Влияние легирующих элементов на превращения в стали. А. Влияние легирующих элементов на превращение перлита в аустенит.
- •Б. Влияние легирующих элементов на превращение переохлажденного аустенита.
- •В. Влияние легирующих элементов на мартенситное превращение
- •Г. Влияние легирующих элементов на преврашения при отпуске.
- •Классификация легированных сталей.
- •Лекция № 14
- •План лекции:
- •4. Вывод.
- •Общие сведения.
- •Классификация конструкционных сталей.
- •А. Цементуемые стали.
- •Б. Улучшаемые стали.
- •В. Высокопрочные стали.
- •Г. Автоматные стали.
- •Д. Подшипниковые стали.
- •Маркировка конструкционных сталей.
- •Лекция № 15
- •План лекции:
- •5. Вывод.
- •Общие сведения.
- •Классификация инструментальных сталей.
- •А. Углеродистые инструментальные стали.
- •Б. Легированные инструментальные стали.
- •В. Быстрорежущие стали.
- •Маркировка инструментальных сталей.
- •Применение инструментальной легированной стали.
- •Лекция № 16
- •План лекции:
- •4. Вывод.
- •Общие сведения.
- •Стали и сплавы с особыми химическими свойствами. А. Коррозионно-стойкие стали и сплавы.
- •Б. Жаростойкие (окалиностойкие) стали и сплавы.
- •В. Жаропрочные стали и сплавы.
- •Стали и сплавы с особыми физическими свойствами.
- •А. Стали и сплавы с заданным температурным коэффициентом линейного расширения.
- •Б. Стали и сплавы с высоким электросопротивлением.
- •Б. Магнитные стали и ставы.
- •Лекция № 17
- •План лекции:
- •5. Вывод.
- •Общие сведения.
- •Быстрорежущие стали.
- •Маркировка быстрорежущих сталей.
- •Применение.
- •Лекция № 18
- •План лекции:
- •3. Вывод.
- •Общие сведения.
- •Твердые сплавы.
- •А. Сплавы группы вк.
- •Б. Сплавы группы тк.
- •В. Сплавы группы ттк.
- •Лекция № 19
- •План лекции:
- •9. Вывод.
- •Общие сведения.
- •Превращения, протекающие, в структуре стали при нагреве и охлаждении.
- •Механизм основных превращений. А. Превращение перлита в аустенит.
- •Б. Рост зерна аустенита.
- •Закономерности превращения.
- •Промежуточное превращение.
- •Превращение аустенита в мартенсит при высоких скоростях охлаждения.
- •Превращение мартенсита в перлит.
- •Виды термической обработки металлов.
- •Лекция № 20
- •План лекции:
- •5. Вывод.
- •Технологические возможности и особенности отжига, нормализации, закалки и отпуска.
- •Отжиг и нормализация. Назначение и режимы.
- •А) Отжиг первого рода.
- •Б) Отжиг второго рода.
- •Закалка. Способы закалки.
- •Охлаждение при закалке.
- •Способы закалки.
- •1. Закалка в одном охладителе (v1).
- •2. Закалка в двух сферах или прерывистая (v2).
- •3. Ступенчатая закалка (v3).
- •4. Изотермическая закалка (v4).
- •5. Закалка с самоотпуском.
- •Отпуск. Отпускная хрупкость.
- •Отпускная хрупкость
- •Лекция № 21
- •План лекции:
- •4. Вывод.
- •Общие сведения.
- •Назначение и технология видов химико-термической обработки: цементации, азотирования, нитроцементации и диффузионной металлизации. А. Цементация
- •Б. Цементация в твердом карбюризаторе.
- •В. Газовая цементация.
- •Г. Структура цементованного слоя.
- •Д. Термическая обработка после цементации.
- •Е. Азотирование
- •Ж. Цианирование и нитроцементация
- •З. Диффузионная металлизвция
- •Лекция № 22
- •План лекции:
- •5. Вывод.
- •Некоторые сведения об истории медных сплавов.
- •Сплавы на основе меди.
- •А. Латунь
- •А. Бронза
- •Маркировка сплавов на основе меди.
- •4. Вывод.
- •Общие сведения.
- •4. Вывод.
- •Общие сведения.
Механизм основных превращений. А. Превращение перлита в аустенит.
Превращение основано на диффузии углерода, сопровождается полиморфным превращением, а так же растворением цементита в аустените.
Для исследования процессов строят диаграммы изотермического образования аустенита (рис.4). Для этого образцы нагревают до температуры выше и выдерживают, фиксируя начало и конец превращения.
Рис. 4. Диаграмма изотермического образования аустенита: 1 - начало образования аустенита; 2 - конец преобразования перлита в аустенит; 3 - полное растворение цементита.
С увеличением перегрева и скорости нагрева продолжительность превращения сокращается.
Механизм превращения представлен на рис.5.
Рис. 5. Механизм превращения перлита в аустенит.
Превращение начинаются с зарождения центров аустенитных зерен на поверхности раздела феррит – цементит, кристаллическая решетка перестраивается в решетку.
Время превращения зависит от температуры, так как с увеличением степени перегрева уменьшается размер критического зародыша аустенита, увеличиваются скорость возникновения зародышей и скорость их роста
Образующиеся зерна аустенита имеют вначале такую же концентрацию углерода, как и феррит. Затем в аустените начинает растворяться вторая фаза перлита – цементит, следовательно, концентрация углерода увеличивается. Превращение в идет быстрее. После того, как весь цементит растворится, аустенит неоднороден по химическому составу: там, где находились пластинки цементита концентрация углерода более высокая. Для завершения процесса перераспределения углерода в аустените требуется дополнительный нагрев или выдержка.
Величина образовавшегося зерна аустенита оказывает влияние на свойства стали.
Б. Рост зерна аустенита.
Образующиеся зерна аустенита получаются мелкими (начальное зерно). При повышении температуры или выдержке происходит рост зерна аустенита. Движущей силой роста является разность свободных энергий мелкозернистой (большая энергия) и крупнозернистой (малая энергия) структуры аустенита.
Стали различают по склонности к росту зерна аустенита. Если зерно аустенита начинает быстро расти даже при незначительном нагреве выше температуры, то сталь наследственно крупнозернистая. Если зерно растет только при большом перегреве, то сталь наследственно мелкозернистая.
Склонность к росту аустенитного зерна является плавочной характеристикой. Стали одной марки, но разных плавок могут различаться, так как содержат неодинаковое количество неметаллических включений, которые затрудняют рост аустенитного зерна.
Ванадий, титан, молибден, вольфрам, алюминий – уменьшают склонность к росту зерна аустенита, а марганец и фосфор – увеличивают ее.
Заэвтектоидные стали менее склонны к росту зерна.
При последующем охлаждении зерна аустенита не измельчаются. Это следует учитывать при назначении режимов термической обработки, так как от размера зерна зависят механические свойства. Крупное зерно снижает сопротивление отрыву, ударную вязкость, повышает порог хладоломкости.
Различают величину зерна наследственного и действительного.
Для определения величины наследственного зерна, образцы нагревают до 930o С и затем определяют размер зерна.
Действительная величина зерна – размер зерна при обычных температурах. полученный после той или иной термической обработки.
Неправильный режим нагрева может привести либо к перегреву, либо к пережогу стали.
Перегрев. Нагрев доэвтектоидной стали значительно выше температуры приводит к интенсивному росту зерна аустенита. При охлаждении феррит выделяется в виде пластинчатых или игольчатых кристаллов. Такая структура называется видманштеттовая структура и характеризуется пониженными механическими свойствами. Перегрев можно исправить повторным нагревом до оптимальных температур с последующим медленным охлаждением.
Пережог имеет место, когда температура нагрева приближается к температуре плавления. При этом наблюдается окисление границ зерен, что резко снижает прочность стали. Излом такой стали камневидный. Пережог – неисправимый брак.
В. Превращение аустенита в перлит при медленном охлаждении.
Превращение связано
с диффузией углерода, сопровождается
полиморфным превращением
,
выделением углерода из аустенита в виде
цементита, разрастанием образовавшегося
цементита.
В зависимости от степени переохлаждения различают три области превращения. Вначале, с увеличением переохлаждения скорость превращения возрастает, а затем убывает. При температуре 727 0С и ниже 2000 С скорость равна нулю. При температуре 2000 С равна нулю скорость диффузии углерода.
