- •Индукция и дедукция как методы мышления. Полная и неполная индукции.
- •2. Метод математической индукции.
- •3. Применение метода математической индукции в различных разделах математики.
- •Числовые неравенства. Свойства числовых неравенств.
- •Методы доказательства неравенств.
- •Метод оценки знака разности левой и правой частей неравенства.
- •Доказательство неравенств на основании опорных неравенств.
- •3. Доказательство неравенств методом от противного.
- •4. Доказательство неравенств методом математической индукции.
- •Доказательство неравенств методом полной индукции.
- •6. Доказательство неравенств с помощью методов математического анализа.
- •Иррациональные уравнения.
- •Иррациональные неравенства.
- •Текстовые задачи
- •1. Применение графиков функций при решении задач школьной математики
- •1. Применение графиков функций при решении задач школьной математики
- •1.1. Задачи на смеси и растворы
- •1.2. Задачи на движение
- •1.3. Задачи на совместную работу
- •2. Нестандартные текстовые задачи
- •2.1. Задачи, которые решаются при помощи неравенств
- •2.2. Задачи с целочисленными неизвестными
- •2.3. Задачи с альтернативным условием
- •2.4. Задачи, где число неизвестных превышает число уравнений
- •Литература
- •Показательные и логарифмические уравнения и неравенства
- •1. Показательные уравнения, основные методы их решения.
- •1. Метод уравнивания показателей.
- •2. Метод введения новых переменных.
- •Функционально-графический метод.
- •2. Показательные неравенства.
- •3. Логарифмические уравнения. Основные методы их решения.
- •4. Логарифмические неравенства.
- •Графики функций и уравнений
- •1.2. Преобразования, изменяющие масштаб
- •2. Построение графиков функций, выражение которых содержит знак модуля
- •3. Построение графиков суммы, разности, произведения и частного функций
- •3.1. Построений графиков суммы и разности функций
- •3.2. Построений графиков произведения и частного функций
- •4. Построение графиков сложных функций
- •5. Применение графиков функций при решении задач школьной математики Задачи с параметрами
- •Функциональный подход к решению уравнений, неравенств и их систем
- •1. Функциональный подход в новых тенденциях школьного математического образования.
- •2. Теоретическое обоснование методов функционального подхода.
- •Доказательство.
- •Доказательство.
- •3.Система задач на применение функционального подхода к решению уравнений и неравенств Решение уравнений, основанные на ограниченности функций
- •Решения уравнений, основанные на симметричности и четности функций
- •Литература
- •Понятие уравнения с параметром.
- •Аналитическое решение уравнения с параметром.
- •Графические приёмы решения задач с параметрами.
- •4. Функционально-графический подход.
- •Решение неравенств с параметрами.
- •Литература
Иррациональные уравнения.
Иррациональными называются уравнения и неравенства, содержащие переменную под знаком корня или под знаком возведения в дробную степень.
Все корни чётной степени, входящие в уравнение, являются арифметическими, т.е. если подкоренное выражение отрицательно, то корень лишён смысла; если подкоренное выражение равно нулю, то корень также равен нулю; если подкоренное выражение положительно, то значение корня положительно.
Все корни нечётной степени, входящие в уравнение, определены при любом действительном значении подкоренного выражения и в зависимости от знака подкоренного выражения могут принимать как неотрицательные, так и отрицательные значения.
Основные методы решения иррациональных уравнений:
возведение обеих частей уравнения в одну и ту же степень;
замена переменной;
умножение обеих частей уравнения на одну и ту же функцию;
применение свойств функций, входящих в уравнение.
Следует помнить, что ряд преобразований, которые применяются при реализации указанных методов, например возведение обеих частей уравнения в чётную степень, приводят к уравнению-следствию. Оно, наряду с корнями исходного уравнения содержит и другие корни, которые называют посторонними. Поэтому после решения уравнения-следствия необходимо найти способ отсеять посторонние корни. Обычно это можно сделать при помощи проверки, которая в данном случае рассматривается как один из этапов решения.
Возможен и другой путь реализации некоторых методов решения иррациональных уравнений – переход к равносильным системам, в которых учитывается область определения уравнения и требование неотрицательности обеих частей уравнения, возводимых в чётную степень.
Рассмотрим несколько примеров.
Пример 1.
Решим уравнение
.
Решение. Возводим обе части уравнения в квадрат, получаем:
Проверка показывает,
что только
является корнем исходного уравнения.
Ответ: -4.
Пример 2. Решим
уравнение
Решение.
Выполним
замену. Обозначим:
заметим,
что
.
Тогда
и
.
Исходное уравнение принимает вид:
Полученное уравнение равносильно системе:
Из получившейся
системы, имеем:
.
Возвращаемся к подстановке, получаем:
Ответ: 1;
.
Пример 3. Решим
уравнение
.
Решение:
Пусть
Тогда имеем:
Откуда последовательно получаем:
Возвращаясь к первоначальным подстановкам, получим:
Откуда
С помощью проверки убеждаемся, что оба корня являются корнями исходного уравнения.
Ответ: 1; -15.
Пример 4. Решим
уравнение
.
Решение:
Рассмотрим
функцию
.
Исходное уравнение
принимает вид:
.
.
Функция
монотонно возрастает на всей области
определения. Поэтому уравнение может
иметь не более одного корня. Легко
видеть, что
является корнем уравнения.
Ответ: 5.
