- •2. Расчетные нагрузки
- •4.Электрическое освещение: основные определения, системы освещения, виды освещения, источники света.
- •5. Методы проектирования осветительной установки
- •6. Воздушные линии: опоры, провода, изоляторы, линейная арматура
- •7. Кабельные линии. Кабельная канализация
- •8. Электропроводки, токопровода.
- •12. Компенсация реактивной мощности. Потребители реактивной мощности. Поперечная компенсация и продольная емкостная компенсация
- •13. Коммутационные аппараты напряжением до 1 кВ.
- •14.Коммутационные аппараты напряжением выше 1 кВ
- •15. Измерительные трансформаторы
- •16. Схемы эл. Соединений станций и подстанций. Схемы эл. Соед. На стороне 6 -10 кВ
- •17. Схемы электр. Соед. Станций и подстанций. Схемы эл. Соед.На стороне 35 кВ
- •18. Схемы внутризаводского распределения электроэнергии (10 кВ).
- •Схемы замещения отдельных последовательностей.
- •21. Электродинамическое и термическое действие токов кз. Методы ограничения токов кз. Реакторы и сдвоенные реакторы.
- •1. Координация токов кз в современных энергосистемах
- •2. Реакторы
- •3. Сдвоенные реакторы
- •23. Выбор сечения проводников и жил кабелей напряжением до и выше 1 кВ. Выбор комплектных шинопроводов. Выбор и расчет троллейных линий.
- •24.Цеховые трансформаторные подстанции (выбор числа и мощности цеховых трансформаторов с учетом компенсации реактивной мощности, компановка и размещение ктп).
- •Компоновка и размещение трансформаторных подстанций
- •25. Компенсация реактивной мощности в сетях напряжением до 1 кВ.
- •Условия выбора и проверки автоматического выключателя
- •1.1.2 Классификация тт
- •1.2 Соотношения основных величин. Схема замещения и векторная диаграмма тт
- •1.3 Метрологические характеристики тт для релейной защиты
- •1. Силовое оборудование
- •2. Вторичные обмотки и их цепи
- •31. Токовые защиты. Принцип действия токовых защит. Основные органы защиты. Способы изображения схем рза. Схема максимальной токовой защиты (мтз) на постоянном оперативном токе
- •32. Расчет выдержки времени и выбор тока срабатывания мтз
- •33.Особенности расчета мтз с дешунтированием катушки отключения выключателя.
- •Особенности работы мтз с дешунтированием катушки отключения выключателя
- •Мтз с ограничено-зависимой выдержкой времени, выполненная на переменном оперативном токе с дешунтированием катушки отключения выключателя. (рт-85)
- •35. Токовая отсечка на линии с двухсторонним питанием.
- •36. Токовая защита со ступенчатой характеристикой выдержки времени
- •37. Совместное действие устройств автоматического повторного включения (апв) и токовой защиты.
- •38. Максимальная токовая направленная защита (мтнз). Принцип действия. Схема мтнз. Расчет выдержек времени.
- •Принцип действия
- •Область применения
- •Принцип действия
- •Область применения
- •Использование в схемах дз реле с торможением.
- •Система с механическим торможением.
- •44. Поперечная дифференциальная токовая направленная защита. Принцип действия, схема и особенности работы.
- •45. Схемы соединения трансформаторов тока применительно к рза. Схема полной звезды и особенности работы рза по этой схеме.
- •47. Схема неполного и полного треугольника и особенности работы рза по этим схемам.
- •49. Схема токовой ступенчатой защиты на постоянном оперативном токе в совмещенном и разнесенном исполнениях.
- •50. Схема мтз с блокировкой минимального напряжения.
- •51. Виды поврежд.И ненорм. Режимов тр. Газовая защита трансформатора.
- •52. Токовая защита трансформатора со ступенчатой характеристикой выдержки времени многофазных кз.
- •53.Защита тр. От кз на землю.
- •54.Особенности выполнения дифференциальной защиты тр. В зависимости от схемы соединения его обмоток.
- •55. Расчет коэффициентов трансформации трансформаторов тока (тт) в схеме дифференциальной защиты трансформатора.
- •56.Особенности расчета дифференциальной защиты для трансформаторов с регулированием под нагрузкой (рпн).
- •57.Дифференциальная токовая отсечка трансформатора. Схема и расчет. Общая оценка дифферен-циальной защиты трансформаторов.
- •59.Проведение осмотров электрооборудования
- •Организация и проведение малых ремонтов.
- •Организация выполнения ремонтных работ.
- •Организация и проведение средних ремонтов.
- •Организация выполнения ремонтных работ.
- •Организация и проведение капитальных ремонтов
- •Организация выполнения ремонтных работ.
- •Эксплуатация силовых трансформаторов
- •Эксплуатация кабельных линий
- •Работы по наряду-допуску.
- •Работы по распоряжению.
- •Предупреждающие знаки и плакаты.
- •73. Вывод электрооборудования в ремонт.
- •74. Требования к работникам, допускаемым к выполнению работ в электроустановках. Работники обязаны проходить обучение безопасным методам и приемам выполнения работ в электроустановках.
- •75. Электротехнический, электротехнологический и неэлектрический персонал организации.
- •IV Группа допуска по электробезопасности
- •V Группа допуска по электробезопасности
- •77. Опасность поражения человека электрическим током и порядок оказания первой помощи при несчастных случаях на производстве
- •79. Классификация помещений по электробезопасности и характеру окружающей среды.
- •81. Организационные и технические мероприятия по обеспечению безопасного выполнения работ в электроустановках.
- •82. Средства защит, применяемые при эксплуатации электроустановок. Основные и дополнительные электрозащитные средства в электроустановках до и выше 1000 в.
- •83. Защитное заземление. Зануление
- •84. Напряжение прикосновения. Напряжение шага.
- •85. Устройство защитного отключения
- •86. Выравнивание потенциалов. Уравнение потенциалов
- •44.10. При использовании разделительного трансформатора необходимо руководствоваться следующими требованиями:
55. Расчет коэффициентов трансформации трансформаторов тока (тт) в схеме дифференциальной защиты трансформатора.
Схемы соединения обмоток трансформатора. Если обмотки высшего и низшего напряжения трансформатора соединены не по схеме Y/Y -12, а по какой-то другой схеме, то между токами фаз трансформатора на сторонах высшего и низшего напряжения существует фазовый сдвиг. Так, при широко распространенной схеме соединения обмоток трансформатораY/D-11 фазовый сдвиг составляет ÐI1пI11п = 30 эл. град. Поэтому при один. схемах соед. вторичных обмоток групп 1ТТ и 2ТТ трансф. тока в дифференциальной цепи защиты при внешнем к. з, проходит значительный ток, равный примерно половине вторичного тока ТТ при внешнем к. з. •
Поэтому схемы соединения групп 1ТТ и 2ТТ должны быть такими, чтобы указанный сдвиг по фазе отеутствовал. При этом возможны два варианта: вторичные обмотки группы 1ТТ соед. в треугольник, а группы 2ТТ — в звезду или вторичные обмотки группы 2ТТ — в треугольник, а 1ТТ — в звезду. Предпочтение всегда отдается первому варианту, так как соединение в треугольник вторичных обмоток ТТ, установленных со стороны звезды силового трансформатора, предотвращает возможное неправильное срабатывание дифференциальной защиты при внешних однофазных к. з. (когда нейтраль трансформатора заземлена), поскольку соединение в треугольник предотвращает попадание токов нулевой последовательности в реле защиты. При соединении вторичных обмоток 1ТТ в треугольник токи в цепи циркуляции от 1ТТ (I’1в) в ÖЗ раз больше вторичных токов 1ТТ (I1в). Поэтому коэффициент трансформации 1ТТ выбирается равным IтYном ÖЗ/5, где IтYном — номинальный ток трансформатора со стороны обмотки силового трансформатора, соединенной в звезду.
Рис. 5. Схема соединения ТТ дифференциальной токовой защиты трансформатора Y/D-11 и векторные диаграммы.
Несоответствие коэффициентов трансформации ТТ расчетным значениям. Для обеспечения равенства токов в цепи циркуляции должно соблюдаться соотношение
соответственно для трансформаторов с соединением обмоток по схеме Y/Y и Y/D.
Регулирование коэффициента трансформации тр. При регулировании коэффициента трансформации трансформатора соотношение между первичными, а следовательно, и между вторичными токами 1ТТ и 2ТТ изменяется, что также приводит к появлению тока небаланса в дифференциальной цепи защиты. Различия типов ТТ, их нагрузок и кратностей токов внешнего к. з. Трансформаторы тока ТТ дифференциальной защиты трансформатора устанавливаются на сторонах трансформатора, имеющих различное напряжение, поэтому они не могут быть одинаковыми. Кроме того, схемы соединения вторичных обмоток ТТ также различны, а следовательно, трансформаторы тока имеют разную нагрузку. Различны у разных групп ТТ (особенно в случае трехобмоточного трансформатора) и кратности тока внешнего к.з. по отношению к их номинальным токам. Все это обусловливает разные погрешности' у разных групп ТТ, что приводит к появлению повышенных токов небаланса в дифференциальной цепи защиты при внешних к. з.
При внешнем к. з., сопровождающемся прохождением через ТТ защиты наибольших токов к. з., ток небаланса
Iнб = I'нб + I"нб + I"’нб, (1)
где I'нб I"нб I"’нб — токи небаланса, обусловленные соответственно погрешностями ТТ, регулированием коэффициента трансформации трансформатора и неравенством токов в цепи циркуляции от различных групп ТТ.
Раскрывая выражения для отдельных составляющих тока небаланса (1), можно записать:
Iнб,расч = (kоднkаперe + DU*рег + Dfвыр)Iк,ве,max (2)
где kодн = 1—коэффициент однотипности; kапер — коэффициент, учитывающий наличие апериодической составляющей в первичном токе ТТ при внешнем к. з.; e = 0,1 —допустимая относительная погрешность ТТ; DU*рег = DUрег /Uном — относительный диапазон изменения напряжения на вторичной стороне трансформатора при регулировании коэффициента трансформации под нагрузкой устройством РПН; Dfвыр = (I’1в - I’11в )/ I’1в — относительное значение тока небаланса в дифференциальной цепи защиты, обусловленное несоответствием расчетных и фактических коэффициентов трансформации ТТ.
Значения коэффициента kапер в (2) и коэффициента, учитывающего отстройку от броска тока намагничивания,, выбираются разными в зависимости от типа применяемого РТД. Так, для дифференциальной отсечки ток срабатывания определяется как
Iс,з = kотсIбр,нам;(3)
Iс,з = kотсIнб,расч.(4)
При этом в (4) kотс » 2, а выражение (3) с учетом некоторого затухания переходного значения Iбр,нам в течение собственного времени срабатывания электромеханического реле принимает вид:
Iс,з = (3.5¸4.5) Iт,ном (5)
и, как правило, является определяющим. Ток срабатывания реле дифференциальной токовой отсечки
Ic,p = Iс,зÖ3/K1TT, (6)
если Iс,з отнесен к стороне Y трансформатора, где вторичные обмотки 1ТТ соединены в треугольник. Дифференциальная отсечка считается приемлемой, если при двухфазном к. з. на выводах низшего напряжения трансформатора kч >= 2. Несмотря на низкую чувствительность дифференциальной отсечки ее достоинство заключается в обеспечении быстроты срабатывания при наибольших кратностях тока к. з.
При использовании реле с насыщающимися промежуточными трансформаторами РНТ выбор тока срабатывания защиты Iс,з производится по выражениям;
Iс,з = (1 ¸ 1,3I)т,ном (7)
Iс,з = kотс(I’нб + I”нб) (8)
В (8) неучет I”нб объясняется возможностью скомпенсировать эту составляющую (в первом приближении) с помощью промежуточного насыщающегося трансформатора тока ПНТТ с несколькими первичными обмотками (рис. 5,5), когда для предотвращения попадания в реле защиты тока небаланса, обусловленного неравенством токов I’11в и I’1в в цепи циркуляции, производится выравнивание м. д. с. первичных обмоток w1, w2 промежуточных трансформаторов тока так, что I’1в w1 » I’11в w2, т. е. Eв,т » 0 и Iр » 0.
Кроме того, в (8) при расчете I’нб значение коэффициента kапер принимается равным единице.
