- •Лекция № 1 Тема: Алгебра событий
- •1. События, их классификация, вероятность события.
- •2. Операции над событиями.
- •Свойства классической вероятности:
- •4. Теорема сложения и умножения вероятностей.
- •Вероятность того, что деталь находится только в одном ящике, равна
- •5. Формула Бернулли. Формулы полной вероятностей и Байеса.
- •5.1. Повторение испытаний. Формула Бернулли.
- •5.2. Формула полной вероятности
- •5.3. Формула Бейеса. (формула гипотез)
- •6. Локальная и интегральная теорема Лапласа.
- •Лекция № 2 Тема: Характеристики случайных величин. Распределения случайных величин
- •1. Дискретные и непрерывные случайные величины.
- •2. Основные законы распределения дискретных и непрерывных случайных величин (биномиальный, геометрический, нормальный, показательный, равномерное распределение).
- •2.1. Биноминальное распределение.
- •2.3. Равномерное распределение.
- •2.4. Показательное распределение.
- •2.5. Нормальный закон распределения.
- •Лекция № 3 Тема: Распределения случайных величин
- •1. Функция, плотность распределения
- •2.1. Функция распределения.
- •Свойства функции распределения:
- •2.2. Плотность распределения.
- •Свойства плотности распределения:
- •2. Числовые характеристики (математическое ожидание, дисперсия, среднее квадратическое отклонение, мода, медиана).
- •Свойства математического ожидания:
- •Вычисление дисперсии.
- •Свойства дисперсии.
- •Среднее квадратическое отклонение.
- •Лекция № 4 Тема: Формы представления статистических данных.
- •Предмет математической статистики
- •1. Выборка из генеральной совокупности. Вариационный ряд. Гистограмма относительных частот
- •Выборочная функция распределения
- •Лекция № 5 Тема: Оценка параметров распределения.
- •1. Выборочные оценки параметров случайной величины. Основные требования к оценкам
- •2. Состоятельные несмещенные оценки для математического ожидания, дисперсии, ковариации
- •Два распределения, связанные с нормальным законом
- •Доверительные интервалы для математического ожидания и дисперсии
- •Лекция № 6 Тема: Проверка статистических гипотез
- •Правило проверки гипотезы о законе распределения:
- •Критерии согласия
- •2. Параметрические гипотезы.
- •Традиционный метод проверки однородности двух независимых выборок (критерий Стьюдента)
- •Общая постановка задачи проверки гипотез:
- •Лекция № 7 Тема: Математическая формулировка экономических и производственных задач
- •1. Представление ограничений ресурсов, капиталовложений и т.Д. В виде линейных неравенств.
- •Каноническая задача линейного программирования
- •Общая задача линейного программирования
- •2. Определение функции цели и нахождение вектора решений, удовлетворяющего задаче с заданными ограничениями.
- •Лекция № 8 Тема: Графический способ определения оптимального плана
- •1. Графическое решение задач с двумя неизвестными, заданных линейными неравенствами ограничений.
- •Частные случаи использования графического метода
- •Общий алгоритм графического метода
- •2. Построение выпуклого многоугольника возможных решений и определение оптимального плана с помощью градиента функции цели.
- •Лекция № 9 Тема: Симплексный метод для задач с естественным базисом
- •1. Симплекс-метод. Алгоритм симплекс-метода.
- •1. Симплекс-метод. Алгоритм симплекс-метода.
- •Алгоритм симплекс-метода
- •2. Введение естественных базисных переменных. Построение симплексной таблицы. Определение нулевого плана.
- •Лекция № 10 Тема: Симплексный метод для задач с искусственным базисом
- •Лекция № 11 Тема: Закрытая транспортная задача
- •1. Математическая формулировка закрытой транспортной задачи. Определение необходимого количества неизвестных.
- •2. Этапы определения плана решения транспортной задачи.
- •Лекция № 12 Тема: Открытая транспортная задача
- •1. Математическая формулировка открытой транспортной задачи.
- •2. Введение фиктивного поставщика (потребителя) для сведения данной транспортной модели к зтз.
- •Методическое обеспечение
- •2. Формула полной вероятности. Формула Байеса
- •3. Формула Бернулли.
- •4. Применение локальной и интегральной теоремы Лапласа.
- •Практическое занятие № 2 основные законы распределения дискретных случайных величин
- •1. Решение задач на биномиальный закон распределения.
- •2. Основные законы распределения.
- •3. Решение задач на закон Пуассона.
- •Практическое занятие № 3 совместный закон распределения двух случайных величин
- •1. Совместный закон распределения двух случайных величин
- •2. Решение задач по проверке параметрических гипотез.
- •Проверка гипотезы о законе распределения случайной величины по данным опыта
- •Модуль 3. Методы моделирования производственных процессов.
- •Требования к содержанию отдельных частей отчета по лабораторной работе
- •Лабораторная работа № 1 графический (геометрический) способ определения оптимального плана.
- •1. Математическая формулировка смысловой экономической задачи.
- •2. Построение выпуклого многоугольника возможных решений.
- •3. Варианты заданий лабораторной работы:
- •Лабораторная работа № 2 составление математической модели производственной задачи
- •1. Представление ограничений ресурсов в видее математических неравенств. Введение естественных или искусственных базисных переменных.
- •2. Формулировка функции цели.
- •3. Составление и преобразование симплексной таблицы для получения оптимального плана.
- •4. Варианты заданий
- •Лабораторная работа № 3, № 4 модель оптимального состава машинно-тракторного парка (мтп) для выполнения заданных с/х работ
- •4. Лабораторная работа № 4. Модель оптимального доукомплектования мтп.
- •1. Введение основных переменных по количеству используемых агрегатов.
- •2. Составление ограничений на данные переменные. Определение целевой функции.
- •3. Математическая формулировка задачи для использования программного продукта.
- •Лабораторная работа № 4. Модель оптимального доукомплектования мтп.
- •4. Порядок выполнения работы. Варианты заданий
- •Варианты заданий:
- •Лабораторная работа № 5 транспортная задача с закрытой моделью
- •1. Составление распределительной таблицы между поставщиками и потребителями
- •2. Поиск клеток с отрицательными потенциалами в планах «северо-западного угла» и «минимального элемента».
- •3. Порядок выполнения работы. Варианты заданий
- •Лабораторная работа № 6 Транспортная задача с открытой моделью
- •1.Составление распределительной таблицы между поставщиками и потребителями, введение фиктивного потребителя для превращения данной модели в закрытую.
- •2. План выполнения работы. Варианты заданий
- •1. Общие методические рекомендации
- •Контрольные задания для студентов
2.3. Равномерное распределение.
Непрерывная случайная величина имеет равномерное распределение на отрезке [a, b], если на этом отрезке плотность распределения случайной величины постоянна, а вне его равна нулю.
Постоянная величина С может быть определена из условия равенства единице площади, ограниченной кривой распределения.
f(x)
0 a b x
Получаем .
Найдем функцию распределения F(x) на отрезке [a,b].
F(x)
1
0 a b x
Для того, чтобы случайная величина подчинялась закону равномерного распределения необходимо, чтобы ее значения лежали внутри некоторого определенного интервала, и внутри этого интервала значения этой случайной величины были бы равновероятны.
Определим математическое ожидание и дисперсию случайной величины, подчиненной равномерному закону распределения.
Вероятность попадания случайной величины в заданный интервал:
2.4. Показательное распределение.
Показательным (экспоненциальным) называется распределение вероятностей непрерывной случайной величины Х, которое описывается плотностью
где - положительное число.
Найдем закон распределения.
Графики функции распределения и плотности распределения:
f(x)
F(x)
1
0 x 0 x
Найдем математическое ожидание случайной величины, подчиненной показательному распределению.
Результат получен с использованием того факта, что
Для нахождения дисперсии найдем величину М(Х2).
Дважды интегрируя по частям, аналогично рассмотренному случаю, получим:
Тогда
Итого:
Видно, что в случае показательного распределения математическое ожидание и среднее квадратическое отклонение равны.
Также легко определить и вероятность попадания случайной величины, подчиненной показательному закону распределения, в заданный интервал.
Показательное распределение широко используется в теории надежности.
Допустим, некоторое устройство начинает работать в момент времени t0=0, а через какое– то время t происходит отказ устройства.
Обозначим Т непрерывную случайную величину – длительность безотказной работы устройства.
Таким образом, функция распределения F(t) = P(T<t) определяет вероятность отказа за время длительностью t.
Вероятность противоположного события (безотказная работа в течение времени t) равна R(t) = P(T>t) = 1 – F(t).
Функцией надежности R(t) называют функцию, определяющую вероятность безотказной работы устройства в течение времени t.
Часто на практике длительность безотказной работы подчиняется показательному закону распределению.
Вообще говоря, если рассматривать новое устройство, то вероятность отказа в начале его функционирования будет больше, затем количество отказов снизится и будет некоторое время иметь практически одно и то же значение. Затем (когда устройство выработает свой ресурс) количество отказов будет возрастать.
Другими словами, можно сказать, что функционирование устройства на протяжении всего существования (в смысле количества отказов) можно описать комбинацией двух показательных законов (в начале и конце функционирования) и равномерного закона распределения.
Функция надежности для какого- либо устройства при показательном законе распределения равна:
Данное соотношение называют показательным законом надежности.
Важным свойством, позволяющим значительно упростить решение задач теории надежности, является то, что вероятность безотказной работы устройства на интервале времени t не зависит от времени предшествующей работы до начала рассматриваемого интервала, а зависит только от длительности времени t.
Таким образом, безотказная работа устройства зависит только от интенсивности отказов и не зависит от безотказной работы устройства в прошлом.
Так как подобным свойством обладает только показательный закон распределения, то этот факт позволяет определить, является ли закон распределения случайной величины показательным или нет.
