- •Лекция № 1 Тема: Алгебра событий
- •1. События, их классификация, вероятность события.
- •2. Операции над событиями.
- •Свойства классической вероятности:
- •4. Теорема сложения и умножения вероятностей.
- •Вероятность того, что деталь находится только в одном ящике, равна
- •5. Формула Бернулли. Формулы полной вероятностей и Байеса.
- •5.1. Повторение испытаний. Формула Бернулли.
- •5.2. Формула полной вероятности
- •5.3. Формула Бейеса. (формула гипотез)
- •6. Локальная и интегральная теорема Лапласа.
- •Лекция № 2 Тема: Характеристики случайных величин. Распределения случайных величин
- •1. Дискретные и непрерывные случайные величины.
- •2. Основные законы распределения дискретных и непрерывных случайных величин (биномиальный, геометрический, нормальный, показательный, равномерное распределение).
- •2.1. Биноминальное распределение.
- •2.3. Равномерное распределение.
- •2.4. Показательное распределение.
- •2.5. Нормальный закон распределения.
- •Лекция № 3 Тема: Распределения случайных величин
- •1. Функция, плотность распределения
- •2.1. Функция распределения.
- •Свойства функции распределения:
- •2.2. Плотность распределения.
- •Свойства плотности распределения:
- •2. Числовые характеристики (математическое ожидание, дисперсия, среднее квадратическое отклонение, мода, медиана).
- •Свойства математического ожидания:
- •Вычисление дисперсии.
- •Свойства дисперсии.
- •Среднее квадратическое отклонение.
- •Лекция № 4 Тема: Формы представления статистических данных.
- •Предмет математической статистики
- •1. Выборка из генеральной совокупности. Вариационный ряд. Гистограмма относительных частот
- •Выборочная функция распределения
- •Лекция № 5 Тема: Оценка параметров распределения.
- •1. Выборочные оценки параметров случайной величины. Основные требования к оценкам
- •2. Состоятельные несмещенные оценки для математического ожидания, дисперсии, ковариации
- •Два распределения, связанные с нормальным законом
- •Доверительные интервалы для математического ожидания и дисперсии
- •Лекция № 6 Тема: Проверка статистических гипотез
- •Правило проверки гипотезы о законе распределения:
- •Критерии согласия
- •2. Параметрические гипотезы.
- •Традиционный метод проверки однородности двух независимых выборок (критерий Стьюдента)
- •Общая постановка задачи проверки гипотез:
- •Лекция № 7 Тема: Математическая формулировка экономических и производственных задач
- •1. Представление ограничений ресурсов, капиталовложений и т.Д. В виде линейных неравенств.
- •Каноническая задача линейного программирования
- •Общая задача линейного программирования
- •2. Определение функции цели и нахождение вектора решений, удовлетворяющего задаче с заданными ограничениями.
- •Лекция № 8 Тема: Графический способ определения оптимального плана
- •1. Графическое решение задач с двумя неизвестными, заданных линейными неравенствами ограничений.
- •Частные случаи использования графического метода
- •Общий алгоритм графического метода
- •2. Построение выпуклого многоугольника возможных решений и определение оптимального плана с помощью градиента функции цели.
- •Лекция № 9 Тема: Симплексный метод для задач с естественным базисом
- •1. Симплекс-метод. Алгоритм симплекс-метода.
- •1. Симплекс-метод. Алгоритм симплекс-метода.
- •Алгоритм симплекс-метода
- •2. Введение естественных базисных переменных. Построение симплексной таблицы. Определение нулевого плана.
- •Лекция № 10 Тема: Симплексный метод для задач с искусственным базисом
- •Лекция № 11 Тема: Закрытая транспортная задача
- •1. Математическая формулировка закрытой транспортной задачи. Определение необходимого количества неизвестных.
- •2. Этапы определения плана решения транспортной задачи.
- •Лекция № 12 Тема: Открытая транспортная задача
- •1. Математическая формулировка открытой транспортной задачи.
- •2. Введение фиктивного поставщика (потребителя) для сведения данной транспортной модели к зтз.
- •Методическое обеспечение
- •2. Формула полной вероятности. Формула Байеса
- •3. Формула Бернулли.
- •4. Применение локальной и интегральной теоремы Лапласа.
- •Практическое занятие № 2 основные законы распределения дискретных случайных величин
- •1. Решение задач на биномиальный закон распределения.
- •2. Основные законы распределения.
- •3. Решение задач на закон Пуассона.
- •Практическое занятие № 3 совместный закон распределения двух случайных величин
- •1. Совместный закон распределения двух случайных величин
- •2. Решение задач по проверке параметрических гипотез.
- •Проверка гипотезы о законе распределения случайной величины по данным опыта
- •Модуль 3. Методы моделирования производственных процессов.
- •Требования к содержанию отдельных частей отчета по лабораторной работе
- •Лабораторная работа № 1 графический (геометрический) способ определения оптимального плана.
- •1. Математическая формулировка смысловой экономической задачи.
- •2. Построение выпуклого многоугольника возможных решений.
- •3. Варианты заданий лабораторной работы:
- •Лабораторная работа № 2 составление математической модели производственной задачи
- •1. Представление ограничений ресурсов в видее математических неравенств. Введение естественных или искусственных базисных переменных.
- •2. Формулировка функции цели.
- •3. Составление и преобразование симплексной таблицы для получения оптимального плана.
- •4. Варианты заданий
- •Лабораторная работа № 3, № 4 модель оптимального состава машинно-тракторного парка (мтп) для выполнения заданных с/х работ
- •4. Лабораторная работа № 4. Модель оптимального доукомплектования мтп.
- •1. Введение основных переменных по количеству используемых агрегатов.
- •2. Составление ограничений на данные переменные. Определение целевой функции.
- •3. Математическая формулировка задачи для использования программного продукта.
- •Лабораторная работа № 4. Модель оптимального доукомплектования мтп.
- •4. Порядок выполнения работы. Варианты заданий
- •Варианты заданий:
- •Лабораторная работа № 5 транспортная задача с закрытой моделью
- •1. Составление распределительной таблицы между поставщиками и потребителями
- •2. Поиск клеток с отрицательными потенциалами в планах «северо-западного угла» и «минимального элемента».
- •3. Порядок выполнения работы. Варианты заданий
- •Лабораторная работа № 6 Транспортная задача с открытой моделью
- •1.Составление распределительной таблицы между поставщиками и потребителями, введение фиктивного потребителя для превращения данной модели в закрытую.
- •2. План выполнения работы. Варианты заданий
- •1. Общие методические рекомендации
- •Контрольные задания для студентов
4. Теорема сложения и умножения вероятностей.
Теорема
(сложения вероятностей).
Вероятность суммы двух несовместных
событий равна сумме вероятностей этих
событий.
Следствие
1: Если
события
образуют полную группу несовместных
событий, то сумма их вероятностей равна
единице.
Противоположными называются два несовместных события, образующие полную группу.
Теорема. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления.
Следствие 2: Сумма вероятностей противоположных событий равна единице.
Событие А называется независимым от события В, вероятность события А не зависит от того, произошло событие В или нет. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.
Вероятность события В, вычисленная при условии, что имело место событие А, называется условной вероятностью события В.
Теорема. (Умножения вероятностей) Вероятность произведения двух событий (совместного появления этих событий) равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие уже наступило.
Также
можно записать:
Доказательство этой теоремы непосредственно вытекает из определения условной вероятности.
Если
события независимые, то
,
и теорема умножения вероятностей
принимает вид:
В случае произведения нескольких зависимых событий вероятность равна произведению одного из них на условные вероятности всех остальных при условии, что вероятность каждого последующего вычисляется в предположении, что все остальные события уже совершились.
Из теоремы произведения вероятностей можно сделать вывод о вероятности появления хотя бы одного события.
Если в результате испытания может появиться п событий, независимых в совокупности, то вероятность появления хотя бы одного из них равна
Здесь
событие А обозначает наступление хотя
бы одного из событий Ai,
а qi
– вероятность противоположных событий
.
Пример. Из полной колоды карт (52 шт.) одновременно вынимают четыре карты. Найти вероятность того, что среди этих четырех карт будет хотя бы одна бубновая или одна червонная карта.
Обозначим появление хотя бы одной бубновой карты – событие А, появление хотя бы одной червонной карты – событие В. Таким образом нам надо определить вероятность события С = А + В.
Кроме того, события А и В – совместны, т.е. появление одного из них не исключает появления другого.
Всего в колоде 13 червонных и 13 бубновых карт.
При
вытаскивании первой карты вероятность
того, что не появится ни червонной ни
бубновой карты равна
,
при вытаскивании второй карты -
,
третьей -
,
четвертой -
.
Тогда
вероятность того, что среди вынутых
карт не будет ни бубновых, ни червонных
равна
.
Тогда
Пример. Чему равна вероятность того, что при бросании трех игральных костей 6 очков появится хотя бы на одной из костей?
Вероятность
выпадения 6 очков при одном броске кости
равна
.
Вероятность того, что не выпадет 6 очков
-
.
Вероятность того, что при броске трех
костей не выпадет ни разу 6 очков равна
.
Тогда
вероятность того, что хотя бы один раз
выпадет 6 очков равна
.
Пример. В барабане револьвера находятся 4 патрона из шести в произвольном порядке. Барабан раскручивают, после чего нажимают на спусковой крючок два раза. Найти вероятности хотя бы одного выстрела, двух выстрелов, двух осечек.
Вероятность
выстрела при первом нажатии на курок
(событие А) равна
,
вероятность осечки -
Вероятность выстрела при втором нажатии
на курок зависит от результата первого
нажатия.
Так если в первом случае произошел выстрел, то в барабане осталось только 3 патрона, причем они распределены по 5 гнездам, т.к. при втором нажатии на курок напротив ствола не может оказаться гнездо, в котором был патрон при первом нажатии на курок.
Условная
вероятность выстрела при второй попытке
-
если в первый раз был выстрел,
- если в первый раз произошла осечка.
Условная
вероятность осечки во второй раз -
,
если в первый раз произошел выстрел,
- если в первый раз была осечка.
Рассмотрим
вероятности того, что во втором случае
произойдет выстрел (событие В) или
произойдет осечка (событие
)
при условии, что в первом случае произошел
выстрел (событие А) или осечка (событие
).
-
два выстрела подряд
-
первая осечка, второй выстрел
-
первый выстрел, вторая осечка
-
две осечки подряд
Эти четыре случая образуют полную группу событий (сумма их вероятностей равна единице)
Анализируя
полученные результаты, видим, что
вероятность хотя бы одного выстрела
равна сумме
Теперь рассмотрим другой случай. Предположим, что после первого нажатия на курок барабан раскрутили и опять нажали на курок.
Вероятности
первого выстрела и первой осечки не
изменились -
,
Условные вероятности второго выстрела
и осечки вычисляются из условия, что
напротив ствола может оказаться то же
гнездо, что и в первый раз.
Условная
вероятность выстрела при второй попытке
-
если в первый раз был выстрел,
- если в первый раз произошла осечка.
Условная
вероятность осечки во второй раз -
,
если в первый раз произошел выстрел,
- если была осечка.
Тогда:
-
два выстрела подряд
-
первая осечка, второй выстрел
-
первый выстрел, вторая осечка
-
две осечки подряд
В этом случае вероятность того, что произойдет хотя бы один выстрел, равна
Ниже
показаны диаграммы вероятностей для
первого и второго рассмотренных случаев.
Пример. Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,7, а для второго – 0,8. Найти вероятность того, что при одном залпе в мишень попадает только один из стрелков.
Обозначим попадание в цель первым стрелком – событие А, вторым – событие В, промах первого стрелка – событие , промах второго – событие .
Вероятность того, что первый стрелок попадет в мишень, а второй – нет равна
Вероятность того, что второй стрелок попадет в цель, а первый – нет равна
Тогда вероятность попадания в цель только одним стрелком равна
Тот же результат можно получить другим способом – находим вероятности того, что оба стрелка попали в цель и оба промахнулись. Эти вероятности соответственно равны:
Тогда вероятность того, что в цель попадет только один стрелок равна:
Пример. Вероятность того, что взятая наугад деталь из некоторой партии деталей, будет бракованной равна 0,2. Найти вероятность того, что из трех взятых деталей 2 окажется не бракованными.
Обозначим бракованную деталь – событие А, не бракованную – событие .
Если среди трех деталей оказывается только одна бракованная, то это возможно в одном из трех случаев: бракованная деталь будет первой, второй или третьей.
Пример. Вероятности того, что нужная деталь находится в первом, втором, третьем или четвертом ящике, соответственно равны 0,6, 0,7, 0,8, 0,9. Найти вероятности того, что эта деталь находится: а) не более, чем в трех ящиках; б) не менее, чем в двух ящиках.
а) Вероятность того, что данная деталь находится во всех четырех ящиках, равна
Вероятность того, что нужная деталь находиться не более, чем в трех ящиках равна вероятности того, что она не находится во всех четырех ящиках.
.
б) Вероятность того, что нужная деталь находится не менее, чем в двух ящиках, складывается из вероятностей того, что деталь находиться только в двух ящиках, только в трех ящиках, только в четырех ящиках. Конечно, эти вероятности можно посчитать, а потом сложить, однако, проще поступить иначе. Та же вероятность равна вероятности того, что деталь не находится только в одном ящике и имеется вообще.
