- •Лекция № 1 Тема: Алгебра событий
- •1. События, их классификация, вероятность события.
- •2. Операции над событиями.
- •Свойства классической вероятности:
- •4. Теорема сложения и умножения вероятностей.
- •Вероятность того, что деталь находится только в одном ящике, равна
- •5. Формула Бернулли. Формулы полной вероятностей и Байеса.
- •5.1. Повторение испытаний. Формула Бернулли.
- •5.2. Формула полной вероятности
- •5.3. Формула Бейеса. (формула гипотез)
- •6. Локальная и интегральная теорема Лапласа.
- •Лекция № 2 Тема: Характеристики случайных величин. Распределения случайных величин
- •1. Дискретные и непрерывные случайные величины.
- •2. Основные законы распределения дискретных и непрерывных случайных величин (биномиальный, геометрический, нормальный, показательный, равномерное распределение).
- •2.1. Биноминальное распределение.
- •2.3. Равномерное распределение.
- •2.4. Показательное распределение.
- •2.5. Нормальный закон распределения.
- •Лекция № 3 Тема: Распределения случайных величин
- •1. Функция, плотность распределения
- •2.1. Функция распределения.
- •Свойства функции распределения:
- •2.2. Плотность распределения.
- •Свойства плотности распределения:
- •2. Числовые характеристики (математическое ожидание, дисперсия, среднее квадратическое отклонение, мода, медиана).
- •Свойства математического ожидания:
- •Вычисление дисперсии.
- •Свойства дисперсии.
- •Среднее квадратическое отклонение.
- •Лекция № 4 Тема: Формы представления статистических данных.
- •Предмет математической статистики
- •1. Выборка из генеральной совокупности. Вариационный ряд. Гистограмма относительных частот
- •Выборочная функция распределения
- •Лекция № 5 Тема: Оценка параметров распределения.
- •1. Выборочные оценки параметров случайной величины. Основные требования к оценкам
- •2. Состоятельные несмещенные оценки для математического ожидания, дисперсии, ковариации
- •Два распределения, связанные с нормальным законом
- •Доверительные интервалы для математического ожидания и дисперсии
- •Лекция № 6 Тема: Проверка статистических гипотез
- •Правило проверки гипотезы о законе распределения:
- •Критерии согласия
- •2. Параметрические гипотезы.
- •Традиционный метод проверки однородности двух независимых выборок (критерий Стьюдента)
- •Общая постановка задачи проверки гипотез:
- •Лекция № 7 Тема: Математическая формулировка экономических и производственных задач
- •1. Представление ограничений ресурсов, капиталовложений и т.Д. В виде линейных неравенств.
- •Каноническая задача линейного программирования
- •Общая задача линейного программирования
- •2. Определение функции цели и нахождение вектора решений, удовлетворяющего задаче с заданными ограничениями.
- •Лекция № 8 Тема: Графический способ определения оптимального плана
- •1. Графическое решение задач с двумя неизвестными, заданных линейными неравенствами ограничений.
- •Частные случаи использования графического метода
- •Общий алгоритм графического метода
- •2. Построение выпуклого многоугольника возможных решений и определение оптимального плана с помощью градиента функции цели.
- •Лекция № 9 Тема: Симплексный метод для задач с естественным базисом
- •1. Симплекс-метод. Алгоритм симплекс-метода.
- •1. Симплекс-метод. Алгоритм симплекс-метода.
- •Алгоритм симплекс-метода
- •2. Введение естественных базисных переменных. Построение симплексной таблицы. Определение нулевого плана.
- •Лекция № 10 Тема: Симплексный метод для задач с искусственным базисом
- •Лекция № 11 Тема: Закрытая транспортная задача
- •1. Математическая формулировка закрытой транспортной задачи. Определение необходимого количества неизвестных.
- •2. Этапы определения плана решения транспортной задачи.
- •Лекция № 12 Тема: Открытая транспортная задача
- •1. Математическая формулировка открытой транспортной задачи.
- •2. Введение фиктивного поставщика (потребителя) для сведения данной транспортной модели к зтз.
- •Методическое обеспечение
- •2. Формула полной вероятности. Формула Байеса
- •3. Формула Бернулли.
- •4. Применение локальной и интегральной теоремы Лапласа.
- •Практическое занятие № 2 основные законы распределения дискретных случайных величин
- •1. Решение задач на биномиальный закон распределения.
- •2. Основные законы распределения.
- •3. Решение задач на закон Пуассона.
- •Практическое занятие № 3 совместный закон распределения двух случайных величин
- •1. Совместный закон распределения двух случайных величин
- •2. Решение задач по проверке параметрических гипотез.
- •Проверка гипотезы о законе распределения случайной величины по данным опыта
- •Модуль 3. Методы моделирования производственных процессов.
- •Требования к содержанию отдельных частей отчета по лабораторной работе
- •Лабораторная работа № 1 графический (геометрический) способ определения оптимального плана.
- •1. Математическая формулировка смысловой экономической задачи.
- •2. Построение выпуклого многоугольника возможных решений.
- •3. Варианты заданий лабораторной работы:
- •Лабораторная работа № 2 составление математической модели производственной задачи
- •1. Представление ограничений ресурсов в видее математических неравенств. Введение естественных или искусственных базисных переменных.
- •2. Формулировка функции цели.
- •3. Составление и преобразование симплексной таблицы для получения оптимального плана.
- •4. Варианты заданий
- •Лабораторная работа № 3, № 4 модель оптимального состава машинно-тракторного парка (мтп) для выполнения заданных с/х работ
- •4. Лабораторная работа № 4. Модель оптимального доукомплектования мтп.
- •1. Введение основных переменных по количеству используемых агрегатов.
- •2. Составление ограничений на данные переменные. Определение целевой функции.
- •3. Математическая формулировка задачи для использования программного продукта.
- •Лабораторная работа № 4. Модель оптимального доукомплектования мтп.
- •4. Порядок выполнения работы. Варианты заданий
- •Варианты заданий:
- •Лабораторная работа № 5 транспортная задача с закрытой моделью
- •1. Составление распределительной таблицы между поставщиками и потребителями
- •2. Поиск клеток с отрицательными потенциалами в планах «северо-западного угла» и «минимального элемента».
- •3. Порядок выполнения работы. Варианты заданий
- •Лабораторная работа № 6 Транспортная задача с открытой моделью
- •1.Составление распределительной таблицы между поставщиками и потребителями, введение фиктивного потребителя для превращения данной модели в закрытую.
- •2. План выполнения работы. Варианты заданий
- •1. Общие методические рекомендации
- •Контрольные задания для студентов
Лекция № 5 Тема: Оценка параметров распределения.
План:
1. Выборочные оценки параметров случайной величины. Основные требования к оценкам.
2. Состоятельные несмещенные оценки для математического ожидания, дисперсии, ковариации.
1. Выборочные оценки параметров случайной величины. Основные требования к оценкам
На практике эти параметры находятся приближенно по данным опыта.
Пусть
с испытанием связана случайная величина
с неизвестным параметром
,
и пусть в результате серии независимых
испытаний получена выборка
.
В качестве приближенного значения
параметра
принимают надлежащим образом выбранную
комбинацию элементов выборки
.
.
Величина
называется выборочной
оценкой параметра
.
К выборочным оценкам предъявляются следующие три основных требования: состоятельность, несмещенность, эффективность.
Чтобы были понятны даваемые далее определения этих понятий, обратим внимание на следующее: до выполнения испытаний числа представляют собой независимые случайные величины, подчиненные одному и тому же закону распределения, совпадающему с законом распределения случайной величины , поэтому также является случайной величиной, и имеет смысл говорить о математическом ожидании, дисперсии, СКО и т.д. случайной величины .
2. Состоятельные несмещенные оценки для математического ожидания, дисперсии, ковариации
Для выполнения инженерных расчетов, связанных с прогнозированием по массовым случайным явлениям и основанных на методах теории вероятностей, необходимо знать параметры случайных величин, участвующих в этих расчетах: математическое ожидание, дисперсию и т.д.
Оценка называется состоятельной, если при неограниченном увеличении объема выборки сходится по вероятности к истинному значению параметра :
Это означает: при достаточно большом объеме выборки с практической достоверностью (с вероятностью, близкой к единице) практически совпадает с истинным значением .
Оценка называется несмещенной, если ее математическое ожидание совпадает с истинным значением параметра :
.Оценка называется эффективной, если она несмещенная и при этом имеет наименьшую дисперсию (наименьший разброс относительно ) по сравнению с другими несмещенными оценками параметра .
Пусть с испытанием связана случайная величина с неизвестными числовыми характеристиками (а, D) и пусть набрана независимая выборка .
В
дальнейшем будем употреблять следующий
удобный термин: любую функцию
от выборки
будем называть статистикой.
Лемма 1. Статистика
является состоятельной несмещенной оценкой математического ожидания а.
Доказательство
1. Мы знаем, что элементы выборки являются независимыми случайными величинами с одним и тем же законом распределения, совпадающим с законом распределения случайной величины , а значит, имеют те же числовые характеристики (а, D).
По теореме Чебышева среднее арифметическое независимых случайных величин с одинаковыми параметрами (а, D), при неограниченном возрастании числа слагаемых сходится по вероятности к общему математическому ожиданию
что и означает состоятельность оценки.
2. Имеем
Это
означает несмещенность оценки
.
Л
емма
2.
Статистика
является состоятельной несмещенной оценкой дисперсии D. (Доказывается аналогично лемме 1).
Замечание 1. Если в формуле заменить (n - 1) на n , то оценка останется состоятельной, но будет смещенной. Величина S2 называется исправленной дисперсией.
Замечание 2. Из леммы 2 следует, что статистика:
является
состоятельной оценкой для СКО
).
Можно доказать, что
,
т.е. оценка S
является смещенной оценкой для
.
Пусть
по данным опыта получим ряд значений
случайной точки (
)
(выборка):
(х1, у1) (х2, у2), …, (хn, уn).
Справедлива следующая
Лемма 3. Состоятельной несмещенной оценкой для cov( ) является выборочная ковариация
где
