- •Лекция № 1 Тема: Алгебра событий
- •1. События, их классификация, вероятность события.
- •2. Операции над событиями.
- •Свойства классической вероятности:
- •4. Теорема сложения и умножения вероятностей.
- •Вероятность того, что деталь находится только в одном ящике, равна
- •5. Формула Бернулли. Формулы полной вероятностей и Байеса.
- •5.1. Повторение испытаний. Формула Бернулли.
- •5.2. Формула полной вероятности
- •5.3. Формула Бейеса. (формула гипотез)
- •6. Локальная и интегральная теорема Лапласа.
- •Лекция № 2 Тема: Характеристики случайных величин. Распределения случайных величин
- •1. Дискретные и непрерывные случайные величины.
- •2. Основные законы распределения дискретных и непрерывных случайных величин (биномиальный, геометрический, нормальный, показательный, равномерное распределение).
- •2.1. Биноминальное распределение.
- •2.3. Равномерное распределение.
- •2.4. Показательное распределение.
- •2.5. Нормальный закон распределения.
- •Лекция № 3 Тема: Распределения случайных величин
- •1. Функция, плотность распределения
- •2.1. Функция распределения.
- •Свойства функции распределения:
- •2.2. Плотность распределения.
- •Свойства плотности распределения:
- •2. Числовые характеристики (математическое ожидание, дисперсия, среднее квадратическое отклонение, мода, медиана).
- •Свойства математического ожидания:
- •Вычисление дисперсии.
- •Свойства дисперсии.
- •Среднее квадратическое отклонение.
- •Лекция № 4 Тема: Формы представления статистических данных.
- •Предмет математической статистики
- •1. Выборка из генеральной совокупности. Вариационный ряд. Гистограмма относительных частот
- •Выборочная функция распределения
- •Лекция № 5 Тема: Оценка параметров распределения.
- •1. Выборочные оценки параметров случайной величины. Основные требования к оценкам
- •2. Состоятельные несмещенные оценки для математического ожидания, дисперсии, ковариации
- •Два распределения, связанные с нормальным законом
- •Доверительные интервалы для математического ожидания и дисперсии
- •Лекция № 6 Тема: Проверка статистических гипотез
- •Правило проверки гипотезы о законе распределения:
- •Критерии согласия
- •2. Параметрические гипотезы.
- •Традиционный метод проверки однородности двух независимых выборок (критерий Стьюдента)
- •Общая постановка задачи проверки гипотез:
- •Лекция № 7 Тема: Математическая формулировка экономических и производственных задач
- •1. Представление ограничений ресурсов, капиталовложений и т.Д. В виде линейных неравенств.
- •Каноническая задача линейного программирования
- •Общая задача линейного программирования
- •2. Определение функции цели и нахождение вектора решений, удовлетворяющего задаче с заданными ограничениями.
- •Лекция № 8 Тема: Графический способ определения оптимального плана
- •1. Графическое решение задач с двумя неизвестными, заданных линейными неравенствами ограничений.
- •Частные случаи использования графического метода
- •Общий алгоритм графического метода
- •2. Построение выпуклого многоугольника возможных решений и определение оптимального плана с помощью градиента функции цели.
- •Лекция № 9 Тема: Симплексный метод для задач с естественным базисом
- •1. Симплекс-метод. Алгоритм симплекс-метода.
- •1. Симплекс-метод. Алгоритм симплекс-метода.
- •Алгоритм симплекс-метода
- •2. Введение естественных базисных переменных. Построение симплексной таблицы. Определение нулевого плана.
- •Лекция № 10 Тема: Симплексный метод для задач с искусственным базисом
- •Лекция № 11 Тема: Закрытая транспортная задача
- •1. Математическая формулировка закрытой транспортной задачи. Определение необходимого количества неизвестных.
- •2. Этапы определения плана решения транспортной задачи.
- •Лекция № 12 Тема: Открытая транспортная задача
- •1. Математическая формулировка открытой транспортной задачи.
- •2. Введение фиктивного поставщика (потребителя) для сведения данной транспортной модели к зтз.
- •Методическое обеспечение
- •2. Формула полной вероятности. Формула Байеса
- •3. Формула Бернулли.
- •4. Применение локальной и интегральной теоремы Лапласа.
- •Практическое занятие № 2 основные законы распределения дискретных случайных величин
- •1. Решение задач на биномиальный закон распределения.
- •2. Основные законы распределения.
- •3. Решение задач на закон Пуассона.
- •Практическое занятие № 3 совместный закон распределения двух случайных величин
- •1. Совместный закон распределения двух случайных величин
- •2. Решение задач по проверке параметрических гипотез.
- •Проверка гипотезы о законе распределения случайной величины по данным опыта
- •Модуль 3. Методы моделирования производственных процессов.
- •Требования к содержанию отдельных частей отчета по лабораторной работе
- •Лабораторная работа № 1 графический (геометрический) способ определения оптимального плана.
- •1. Математическая формулировка смысловой экономической задачи.
- •2. Построение выпуклого многоугольника возможных решений.
- •3. Варианты заданий лабораторной работы:
- •Лабораторная работа № 2 составление математической модели производственной задачи
- •1. Представление ограничений ресурсов в видее математических неравенств. Введение естественных или искусственных базисных переменных.
- •2. Формулировка функции цели.
- •3. Составление и преобразование симплексной таблицы для получения оптимального плана.
- •4. Варианты заданий
- •Лабораторная работа № 3, № 4 модель оптимального состава машинно-тракторного парка (мтп) для выполнения заданных с/х работ
- •4. Лабораторная работа № 4. Модель оптимального доукомплектования мтп.
- •1. Введение основных переменных по количеству используемых агрегатов.
- •2. Составление ограничений на данные переменные. Определение целевой функции.
- •3. Математическая формулировка задачи для использования программного продукта.
- •Лабораторная работа № 4. Модель оптимального доукомплектования мтп.
- •4. Порядок выполнения работы. Варианты заданий
- •Варианты заданий:
- •Лабораторная работа № 5 транспортная задача с закрытой моделью
- •1. Составление распределительной таблицы между поставщиками и потребителями
- •2. Поиск клеток с отрицательными потенциалами в планах «северо-западного угла» и «минимального элемента».
- •3. Порядок выполнения работы. Варианты заданий
- •Лабораторная работа № 6 Транспортная задача с открытой моделью
- •1.Составление распределительной таблицы между поставщиками и потребителями, введение фиктивного потребителя для превращения данной модели в закрытую.
- •2. План выполнения работы. Варианты заданий
- •1. Общие методические рекомендации
- •Контрольные задания для студентов
Лекция № 1 Тема: Алгебра событий
План:
1. События, их классификация, вероятность события.
2. Операции над событиями.
3. Непосредственные вычисления вероятности (классический, геометрический, статистический метод).
4. Теорема сложения и умножения вероятностей.
5. Формула Бернулли. Формулы полной вероятностей и Байеса.
6. Локальная и интегральная теорема Лапласа.
1. События, их классификация, вероятность события.
Событием называется всякий факт, который может произойти или не произойти в результате опыта.
При этом тот или иной результат опыта может быть получен с различной степенью возможности. Т.е. в некоторых случаях можно сказать, что одно событие произойдет практически наверняка, другое практически никогда.
В отношении друг друга события также имеют особенности, т.е. в одном случае событие А может произойти совместно с событием В, в другом – нет.
События называются несовместными, если появление одного из них исключает появление других.
Классическим примером несовместных событий является результат подбрасывания монеты – выпадение лицевой стороны монеты исключает выпадение обратной стороны (в одном и том же опыте).
Полной группой событий называется совокупность всех возможных результатов опыта.
Достоверным событием называется событие, которое наверняка произойдет в результате опыта. Событие называется невозможным, если оно никогда не произойдет в результате опыта.
Например, если из коробки, содержащей только красные и зеленые шары, наугад вынимают один шар, то появление среди вынутых шаров белого – невозможное событие. Появление красного и появление зеленого шаров образуют полную группу событий.
События называются равновозможными, если нет оснований считать, что одно из них появится в результате опыта с большей вероятностью.
В приведенном выше примере появление красного и зеленого шаров – равновозможные события, если в коробке находится одинаковое количество красных и зеленых шаров.
Если же в коробке красных шаров больше, чем зеленых, то появление зеленого шара – событие менее вероятное, чем появление красного.
Исходя из этих общих понятий можно дать определение вероятности. Вероятностью события называется число, являющееся выражением меры объективной возможности появления события.
Очевидно,
что вероятность достоверного события
равна единице, а вероятность невозможного
– равна нулю. Таким образом, значение
вероятности любого события – есть
положительное число, заключенное между
нулем и единицей
.
2. Операции над событиями.
События А и В называются равными, если осуществление события А влечет за собой осуществление события В и наоборот.
Объединением или суммой событий Аk называется событие A, которое означает появление хотя бы одного из событий Аk.
Пересечением или произведением событий Ak называется событие А, которое заключается в осуществлении всех событий Ak.
Разностью событий А и В называется событие С, которое означает, что происходит событие А, но не происходит событие В.
Дополнительным
к событию А
называется событие
,
означающее, что событие А
не происходит.
Элементарными исходами опыта называются такие результаты опыта, которые взаимно исключают друг друга и в результате опыта происходит одно из этих событий, также каково бы ни было событие А, по наступившему элементарному исходу можно судить о том, происходит или не происходит это событие.
Совокупность всех элементарных исходов опыта называется пространством элементарных событий.
3. Непосредственные вычисления вероятности (классический, геометрический, статистический метод).
Классический метод определения вероятности.
Для количественного сравнения событий по степени возможности их появления вводится числовая мера, которая называется вероятностью события.
Вероятность события А равна отношению числа случаев т, благоприятствующих ему, к числу п - общму числу случаев (единственно возможных, равновозможных и несовместных). Исход опыта является благоприятствующим событию А, если появление в результате опыта этого исхода влечет за собой появление события А:
-
классическое определение вероятности.
Это есть Из формулы следует, что вероятность события является неотрицательным числом и может изменяться в пределах от нуля до единицы в зависимости от того, какую долю составляет благоприятствующее число случаев от общего числа случаев: 0 ≤ т ≤ п, .
Таким образом, для нахождения вероятности события необходимо, рассмотрев различные исходы испытания, найти совокупность единственно возможных, равновозможных и несовместных случаев, подсчитать общее их число п, число случаев т, благоприятствующих данному событию, и затем выполнить расчет по формуле.
