- •Металлическое состояние, основные типы кристаллических решеток металлов.
- •Аморфные вещества
- •Полиморфизм (аллотропия).
- •Анизотропия свойств металлов.
- •Магнитные превращения
- •Дефекты кристаллического строения металлов.
- •Гетерогенная кристаллизация. Модифицирование.
- •Методы исследования материалов
- •Механические смеси;
- •Химические соединения;
- •Свойства металлов и сплавов
- •Твердость металлов и сплавов.
- •Метод Виккерса
- •Структуры железоуглеродистых сплавов
- •4. Случайные примеси.
- •1. Превращение перлита в аустенит
- •2. Перлитное превращение.
- •3. Мартенситное превращение
- •4.Промежуточное превращение
- •5. Превращение мартенсита в феррито-цементитную смесь.
- •1. Закалка в одном охладителе (v1).
- •2. Закалка в двух сферах или прерывистая (v2).
- •3. Ступенчатая закалка (v3).
- •4. Изотермическая закалка (v4).
- •5. Закалка с самоотпуском.
- •4. По составу:
- •5. По назначению:
- •Композиционные материалы
4. Случайные примеси.
Леция 9. Классификация и маркировка сталей
Классификация сталей
Стали классифицируются по множеству признаков.
По химическому составу: углеродистые и легированные.
По содержанию углерода:
низкоуглеродистые, с содержанием углерода до 0,25 %;
среднеуглеродистые, с содержанием углерода 0,3…0,6 %;
высокоуглеродистые, с содержанием углерода выше 0,7 %
По равновесной структуре: доэвтектоидные, эвтектоидные, заэвтектоидные.
По качеству. Количественным показателем качества является содержания вредных примесей серы и фосфора:
,
–
углеродистые стали обыкновенного
качества:
–
качественные
стали;
–
высококачественные
стали.
По назначению:
конструкционные – применяются для изготовления деталей машин и механизмов;
инструментальные – применяются для изготовления различных инструментов;
специальные – стали с особыми свойствами: электротехнические, с особыми магнитными свойствами и др.
Маркировка сталей
Принято буквенно-цифровое обозначение сталей
Углеродистые стали обыкновенного качества (ГОСТ 380).
Стали содержат повышенное количество серы и фосфора
Маркируются Ст.2кп., БСт.3кп, ВСт.3пс, ВСт.4сп.
Ст – индекс данной группы стали. Цифры от 0 до 6 - это условный номер марки стали. С увеличением номера марки возрастает прочность и снижается пластичность стали. Индексы кп, пс, сп указывают степень раскисления стали: кп - кипящая, пс - полуспокойная, сп - спокойная.
Углеродистые стали качественные
Качественные стали поставляют с гарантированными механическими свойствами и химическим составом. Степень раскисленности, в основном, спокойная.
Конструкционные качественные углеродистые стали.
Маркируются двухзначным числом, указывающим среднее содержание углерода в сотых долях процента. Указывается степень раскисленности, если она отличается от спокойной.
Сталь 08 кп, сталь 10 пс, сталь 45.
Содержание углерода, соответственно, 0,08 %, 0,10 %, 0.45 %.
Инструментальные качественные углеродистые стали.
Маркируются буквой У (углеродистая инструментальная сталь) и числом, указывающим содержание углерода в десятых долях процента.
Сталь У8, сталь У13.
Содержание углерода, соответственно, 0,8 % и 1,3 %
Инструментальные высококачественные углеродистые стали.
Маркируются аналогично качественным инструментальным углеродистым сталям, только в конце марки ставят букву А, для обозначения высокого качества стали (Сталь У10А).
Качественные и высококачественные легированные стали
Обозначение буквенно-цифровое. Легирующие элементы имеют условные обозначения, Обозначаются буквами русского алфавита.
Обозначения легирующих элементов:
Х – хром, Н – никель, М – молибден, В – вольфрам,
К – кобальт, Т – титан, А – азот ( указывается в середине марки),
Г – марганец, Д – медь, Ф – ванадий, С – кремний,
П – фосфор, Р – бор, Б – ниобий, Ц – цирконий,
Ю – алюминий
Легированные конструкционные стали
Пример: сталь 15Х25Н19ВС2
В начале марки указывается двухзначное число, показывающее содержание углерода в сотых долях процента. Далее перечисляются легирующие элементы. Число, следующее за условным обозначение элемента, показывает его содержание в процентах,
Если число не стоит, то содержание элемента не превышает 1,5 %.
В указанной марке стали содержится 0,15 % углерода, 35% хрома, 19 % никеля, до 1,5% вольфрама, до 2 %кремния.
Для обозначения высококачественных легированных сталей в конце марки указывается символ А.
Легированные инструментальные стали
Пример: сталь 9ХС, сталь ХВГ.
В начале марки указывается однозначное число, показывающее содержание углерода в десятых долях процента. При содержании углерода более 1 %, число не указывается.
Далее перечисляются легирующие элементы, с указанием их содержания в %.
Некоторые стали имеют нестандартные обозначения.
Быстрорежущие инструментальные стали
Пример: сталь Р18
Р – индекс данной группы сталей (от rapid – скорость). Содержание углерода более 1%. Число показывает содержание основного легирующего элемента – вольфрама.
В указанной стали содержание вольфрама – 18 %.
Если стали содержат легирующие элемент, то их содержание указывается после обозначения соответствующего элемента.
Шарикоподшипниковые стали
Пример: сталь ШХ6, сталь ШХ15ГС
Ш – индекс данной группы сталей. Х – указывает на наличие в стали хрома. Последующее число показывает содержание хрома в десятых долях процента, в указанных сталях, соответственно, 0,6 % и 1,5 %. Также указываются входящие с состав стали легирующие элементы. Содержание углерода более 1 %.
Лекция 10.
Чугуны. Диаграмма состояния железо – графит. Строение, свойства, классификация и маркировка серых чугунов
Классификация чугунов
Диаграмма состояния железо – графит.
Процесс графитизации.
Строение, свойства, классификация и маркировка серых чугунов
Влияние состава чугуна на процесс графитизации.
Влияние графита на механические свойства отливок.
Положительные стороны наличия графита.
Серый чугун.
Высокопрочный чугун с шаровидным графитом.
Ковкий чугун
Отбеленные и другие чугуны
Классификация чугунов
Чугун отличается от стали:
по составу – более высокое содержание углерода и примесей;
по технологическим свойствам – более высокие литейные свойства, малая способность к пластической деформации, почти не используется в сварных конструкциях.
В зависимости от состояния углерода в чугуне различают:
белый чугун – углерод в связанном состоянии в виде цементита, в изломе имеет белый цвет и металлический блеск;
серый чугун – весь углерод или большая часть находится в свободном состоянии в виде графита, а в связанном состоянии находится не более 0,8 % углерода. Из-за большого количества графита его излом имеет серый цвет;
половинчатый – часть углерода находится в свободном состоянии в форме графита, но не менее 2 % углерода находится в форме цементита. Мало используется в технике.
Белые чугуны
Белый чугун – чугун, в котором весь углерод находится в связанном состоянии, т.е. в виде цементита (Fe3C).
В зависимости от содержания углерода белый чугун подразделяется на доэвтектический (2,14-4,3 % С) (рис.1.8,а), эвтектический (4,3 % С) (рис.1.8,б) и заэвтектический (4,3-6,67 % С) (рис.1.8,в).
а б в
Рис.1.8.Микроструктура белого чугуна: а – доэвтектический;
б – эвтектический; в – заэвтектический
Во всех белых чугунах имеется эвтектика – ледебурит. Микроструктура эвтектического белого чугуна состоит только из одного ледебурита, образующегося при температуре 1147 °С в результате эвтектической кристаллизации жидкого сплава с содержанием углерода 4,3 % и состоящего при этой температуре из цементита и аустенита, содержащего 2,14 % С.
При температуре 727°С аустенит ледебурита, содержащий 0,8 % углерода, превращается в перлит и, следовательно, ледебурит будет состоять при более низких температурах из перлита и цементита.
Доэвтектический белый чугун после полного охлаждения имеет структуру: ледебурит, перлит и вторичный цементит, выделяющийся из аустенита в процессе охлаждения от 1147 до 727 °С. Вторичный цементит практически сливается с цементитом ледебурита и считают, что структура доэвтектического чугуна состоит из ледебурита и перлита. Белый чугун вследствие присутствия в нем большого количества цементита обладает высокой твердостью (450-550 НВ), хрупок, практически не поддается обработке резанием и не используется для изготовления деталей машин.
Доэвтектический белый чугун применяется для переработки в сталь и в чугун другого вида (ковкий).
Ограниченное применение находят чугунные отливки с отбеленной поверхностью: прокатные валки, лемехи плугов, шары мельниц и другие детали, работающие в условиях износа.
Диаграмма состояния железо – графит.
В результате превращения углерод может не только химически взаимодействовать с железом, но и выделяться в элементарном состоянии в форме графита. Жидкая фаза, аустенит и феррит могут находиться в равновесии и с графитом.
Диаграмма состояния железо – графит показана штриховыми линиями на рис. 11.1. Линии диаграммы находятся выше линий диаграммы железо – цементит. Температуры эвтектического и эвтектоидного преврашений, соответственно, 1153oС и 738oС.
Точки C, E, S – сдвинуты влево, и находятся при концентрации углерода 4,24, 2,11 и 0,7 %, соответственно.
Рис.11.1. Диаграмма состояния железо – углерод: сплошные линии – цементитная система; пунктирные – графитная
При высоких температурах цементит разлагается с выделением графита, поэтому диаграмма состояния железо – цементит является метастабильной, а диаграмма железо – графит – стабильной. Процесс образования графита в сплавах железа с углеродом называется графитизацией.
Процесс графитизации.
Графит – это полиморфная модификация углерода. Так как графит содержит 100% углерода, а цементит – 6,67 %, то жидкая фаза и аустенит по составу более близки к цементиту, чем к графиту. Следовательно, образование цементита из жидкой фазы и аустенита должно протекать легче, чем графита.
С другой стороны, при нагреве цементит разлагается на железо и углерод. Следовательно, графит является более стабильной фазой, чем цементит.
Возможны два пути образования графита в чугуне:
Непосредственное образование графита из жидкой фазы. Происходит при благоприятных условиях - наличие в жидкой фазе готовых центров кристаллизации графита и очень медленное охлаждение.
Распад ранее образовавшегося цементита. При температурах выше 738oС цементит разлагается на смесь аустенита и графита по схеме
.
При температурах ниже 738oС разложение цементита осуществляется по схеме:
.
При малых скоростях охлаждения степень разложения цементита больше.
Графитизацию из жидкой фазы, а также от распада цементита первичного и цементита, входящего в состав эвтектики, называют первичной стадией графитизации.
Выделение вторичного графита из аустенита называют промежуточной стадией графитизации.
Образование эвтектоидного графита, а также графита, образовавшегося в результате распада цементита, входящего в состав перлита, называют вторичной стадией графитизации.
Рис. 11.2. Схема образования структур при графитизации
Структура чугунов зависит от степени графитизации, т.е. от того, сколько углерода находится в связанном состоянии.
Выдержка при температуре больше 738oС приводит к графитизации избыточного нерастворившегося цементита. Если процесс завершить полностью, то при высокой температуре структура будет состоять из аустенита и графита, а после охлаждения – из перлита и графита.
При незавершенности процесса первичной графитизации, выше температуры 738oС структура состоит из аустенита, графита и цементита, а ниже этой температуры – из перлита, графита и цементита.
При переходе через критическую точку превращения аустенита в перлит, и выдержке при температуре ниже критической приведет к распаду цементита, входящего в состав перлита (вторичная графитизация). Если процесс завершен полностью то структура состоит из феррита и графита, при незавершенности процесса – из перлита, феррита и графита.
Строение, свойства, классификация и маркировка серых чугунов
Из рассмотрения структур чугунов можно заключить, что их металлическая основа похожа на структуру эвтектоидной или доэвтектоидной стали или технического железа. Отличаются от стали только наличием графитовых включений, определяющих специальные свойства чугунов.
В зависимости от формы графита и условий его образования различают следующие группы чугунов:
серый – с пластинчатым графитом;
высокопрочный – с шаровидным графитом;
ковкий– с хлопьевидным графитом.
Огромное влияние на свойства чугуна оказывает форма графитных включений.
а б в
Рис.1.10. Основные формы графитных включений в чугуне:
а – пластинчатая (серый чугун); б – шаровидная (высокопрочный чугун); в – хлопьевидная (ковкий чугун)
Пластинчатая форма графитных включений особенно сильно снижает пластичность и предел прочности чугуна при растяжении; по мере округления графитных включений (хлопьевидная, шаровидная формы) отрицательное влияние их уменьшается.
Степень разупрочняющего и охрупчивающего действия графита определяется конфигурацией его включений в чугуне (табл.1.2).
Таблица 1.2
Зависимость пластичности чугуна от формы графита
Форма графита |
Название чугуна |
НВ, кгс/мм² |
δ,% |
Пластинчатый |
Серый |
190-275 |
0,1 – 0,5 |
Хлопьевидный |
Ковкий |
100-269 |
3 – 12 |
Шаровидный |
Высокопрочный |
140-360 |
2 –22 |
Структура серых, ковких и высокопрочных чугунов состоит из металлической основы и графита; свойства чугуна будут зависеть от свойств металлической основы, количества, размеров и формы графитных включений.
аиболее широкое распространение получили чугуны с содержанием углерода 2,4…3,8%. Чем выше содержание углерода, тем больше образуется графита и тем ниже его механические свойства, следовательно, количество углерода не должно превышать 3,8 %. В то же время для обеспечения высоких литейных свойств (хорошей жидкотекучести) углерода должно быть не менее 2,4 %.
Влияние состава чугуна на процесс графитизации.
Углерод и кремний способствуют графитизации, марганец затрудняет графитизацию и способствует отбеливанию чугуна. Сера способствует отбеливанию чугуна и ухудшает литейные свойства, ее содержание ограничено – 0,08…0,12 %. Фосфор на процесс графитизации не влияет, но улучшает жидкотекучесть, Фосфор является в чугунах полезной примесью, его содержание – 0,3…0,8 %.
Влияние графита на механические свойства отливок.
Графитовые включения можно рассматривать как соответствующей формы пустоты в структуре чугуна. Около таких дефектов при нагружении концентрируются напряжения, значение которых тем больше, чем острее дефект. Отсюда следует, что графитовые включения пластинчатой формы в максимальной мере разупрочняют металл. Более благоприятна хлопьевидная форма, а оптимальной является шаровидная форма графита. Пластичность зависит от формы таким же образом. Относительное удлинение ( ) дпя серых чугунов составляет 0,5 %, для ковких – до 10 %, для высокопрочных – до 15%.
Наличие графита наиболее резко снижает сопротивление при жестких способах нагружения: удар; разрыв. Сопротивление сжатию снижается мало.
Положительные стороны наличия графита.
графит улучшает обрабатываемость резанием, так как образуется ломкая стружка;
чугун имеет лучшие антифрикционные свойства, по сравнению со сталью, так как наличие графита обеспечивает дополнительную смазку поверхностей трения;
из-за микропустот, заполненных графитом, чугун хорошо гасит вибрации и имеет повышенную циклическую вязкость;
детали из чугуна не чувствительны к внешним концентраторам напряжений (выточки, отверстия, переходы в сечениях);
чугун значительно дешевле стали;
производство изделий из чугуна литьем дешевле изготовления изделий из стальных заготовок обработкой резанием, а также литьем и обработкой давлением с последующей механической обработкой.
Серый чугун.
Структура не оказывает влияние на пластичность, она остается чрезвычайно низкой. Но оказывает влияние на твердость. Механическая прочность в основном определяется количеством, формой и размерами включений графита. Мелкие, завихренной формы чешуйки графита меньше снижают прочность. Такая форма достигается путем модифицирования. В качестве модификаторов применяют алюминий, силикокальций, ферросилиций.
Серый чугун широко применяется в машиностроении, так как легко обрабатывается и обладает хорошими свойствами.
Серые чугуны при малом сопротивлении растяжению имеют достаточно высокое сопротивление сжатию.
По структуре металлической основы серые чугуны делятся на три вида: перлитный (структура перлит + графит), феррито-перлитный (структура феррит + перлит + графит), ферритный (структура феррит + графит) (рис.1.12).
а
б в
Рис. 2.12. Микроструктура серого чугуна: а – ферритный, б – феррито-перлитный, в – перлитный; (x500), травление 4 %-ным спиртовым раствором азотной кислоты)
Механические свойства серого чугуна (табл.1.3) зависят от свойств металлической основы, которая по строению и свойствам близка стали, а также от формы и размера графитовых включений.
Графит имеет очень низкую прочность, поэтому полости, занятые им, действуют как надрезы и трещины в металлической основе чугуна и значительно снижают его прочность и пластичность. Относительное удлинение серых чугунов при растяжении не превышает 0,5 %. Чем больше графита и крупнее его включения, тем ниже механические свойства. Измельчение графитовых включений достигается путем модифицирования.
Серые чугуны используются для деталей, не испытывающих ударных нагрузок и работающих на сжатие и изгиб. Они поглощают вибрацию. К основным характеристикам серого чугуна относится предел прочности при растяжении, определяющий его марку (СЧ20, предел прочности σВ =20 кгс/мм2).
Таблица 1.3
Механические свойства и химический состав серых чугунов
(ГОСТ 1412-85)
Марка Чугуна |
σв, МПа, не менее |
Твёрдость HB, (кгс/мм2), не более |
С, % |
Si, % |
Mn, % |
P |
S |
|
Не более ,% |
||||||||
СЧ10 |
100 |
190 |
3,5-3.7 |
2,2-2,6 |
0,5-0,8 |
0,3 |
0,15 |
|
СЧ15 |
150 |
210 |
3,5-3,7 |
2,0-2,4 |
0,5-0,8 |
0,2 |
0,15 |
|
СЧ20 |
200 |
230 |
3,3-3,5 |
1,4-2,4 |
0,7-1,0 |
0,2 |
0,15 |
|
СЧ25 |
250 |
245 |
3,2-3,4 |
1,4-2,4 |
1,7-1,0 |
0,2 |
0,15 |
|
СЧ30 |
300 |
260 |
3,0-3,2 |
1,3-1,9 |
0,7-1,0 |
0,2 |
0,12 |
|
СЧ35 |
350 |
275 |
2,9-3,0 |
1,2-1,5 |
0,7-1,1 |
0,2 |
0,12 |
|
Серые чугуны содержат углерода – 3,2…3,5 %; кремния – 1,9…2,5 %; марганца –0,5…0,8 %; фосфора – 0,1…0,3 %; серы – < 0,12 %.
Структура металлической основы зависит от количества углерода и кремния. С увеличением содержания углерода и кремния увеличивается степень графитизации и склонность к образованию ферритвой структуры металлической основы. Это ведет к разупрочнению чугуна без повышения пластичности. Лучшими прочностными свойствами и износостойкостью обладают перлитные серые чугуны.
Учитывая малое сопротивление отливок из серого чугуна растягивающим и ударным нагрузкам, следует использовать этот материал для деталей, которые подвергаются сжимающим или изгибающим нагрузкам. В станкостроении это – базовые, корпусные детали, кронштейны, зубчатые колеса, направляющие; в автостроении - блоки цилиндров, поршневые кольца, распределительные валы, диски сцепления. Отливки из серого чугуна также используются в электромашиностроении, для изготовления товаров народного потребления.
Обозначаются
индексом СЧ (серый чугун) и числом,
которое показывает значение предела
прочности, умноженное на
СЧ
15.
Высокопрочный чугун с шаровидным графитом.
Высокопрочные чугуны (ГОСТ 7293) могут иметь ферритную (ВЧ 35), феррито-перлитную (ВЧ45) и перлитную (ВЧ 80) металлическую основу. Получают эти чугуны из серых, в результате модифицирования магнием или церием (добавляется 0,03…0,07% от массы отливки). По сравнению с серыми чугунами, механические свойства повышаются, это вызвано отсутствием неравномерности в распределении напряжений из-за шаровидной формы графита.
Высокопрочный чугун – чугун, в котором графит имеет шаровидную форму (рис. 1.10).
а б
Рис.2.13. Структура высокопрочного чугуна: а – ферритный, б – перлитный (x100;травление 4 % -ным спиртовым раствором азотной кислоты)
Его получают путем модифицирования в ковше жидкого чугуна, не отличающегося по составу от серого (3,0-3,6 % С; 2,0-3,1 % Si), церием или магнием (0,03-0,07 %) или магниевой лигатурой (20 % Mg + 80 % Ni).
По структуре высокопрочный чугун разделяют на ферритный и перлитный (рис. 2.13).
Шаровидный графит, имеющий минимальную поверхность при данном объеме, значительно меньше ослабляет металлическую основу (по сравнению с пластинчатой). Прочностные свойства этих чугунов наиболее высокие. Высокопрочные чугуны не уступают в прочности углеродистым конструкционным сталям, подвергаемым термической обработке. Пластичность этих чугунов удовлетворительная, но несколько уступает стали.
Для повышения механических свойств высокопрочные чугуны нередко подвергают термической обработке. Высокопрочные чугуны обозначаются (маркируются) буквами ВЧ и числом, показывающим предел прочности sВ. Высокопрочные чугуны широко применяются в автостроении и дизелестроении: коленчатые валы, крышки цилиндров и др.; в прокатных станах – прокатные валки и др.; в химической и нефтяной промышленности – корпуса насосов, вентили и т.п.
Механические свойства и назначение высокопрочных чугунов приведены в таблице 1.4.
Таблица 1.4
Механические свойства высокопрочных чугунов
(ГОСТ 7293-85)
Марка чугуна |
σв, МПа |
σ0,2, МПа |
δ,% |
Твердость, НВ,
|
Не менее |
||||
ВЧ35 |
350 |
220 |
22 |
140-170 |
ВЧ40 |
500 |
250 |
15 |
140-202 |
ВЧ45 |
450 |
310 |
10 |
140-225 |
ВЧ50 |
500 |
320 |
7 |
153-345 |
ВЧ60 |
600 |
370 |
3 |
192-277 |
ВЧ70 |
700 |
420 |
2 |
228-302 |
ВЧ80 |
800 |
480 |
2 |
248-351 |
ВЧ100 |
1000 |
700 |
2 |
270-360 |
Чугуны с перлитной металлической основой имеют высокие показатели прочности при меньшем значении пластичности. Соотношение пластичности и прочности ферритных чугунов - обратное.
Высокопрочные чугуны обладают высоким пределом текучести,
,
что выше предела текучести стальных отливок. Также характерна достаточно высокая ударная вязкость и усталостная прочность,
,
при перлитной основе.
Высокопрочные чугуны содержат: углерода – 3,2…3,8 %, кремния – 1,9…2,6 %, марганца – 0,6…0,8 %, фосфора – до 0,12 %, серы – до 0,3 %.
Эти чугуны обладают высокой жидкотекучестью, линейная усадка – около 1%. Литейные напряжения в отливках несколько выше, чем для серого чугуна. Из-за высокого модуля упругости достаточно высокая обрабатываемость резанием. Обладают удовлетворительной свариваемостью.
Из высокопрочного чугуна изготовляют тонкостенные отливки (поршневые кольца), шаботы ковочных молотов, станины и рамы прессов и прокатных станов, изложницы, резцедержатели, планшайбы.
Отливки коленчатых валов массой до 2..3 т, взамен кованых валов из стали, обладают более высокой циклической вязкостью, малочувствительны к внешним концентраторам напряжения, обладают лучшими антифрикционными свойствами и значительно дешевле.
Обозначаются индексом ВЧ (высокопрочный чугун) и числом, которое показывает значение предела прочности, умноженное на ВЧ 100.
Ковкий чугун
Получают отжигом белого доэвтектического чугуна.
Ковкий чугун имеет в структуре графит хлопьевидной формы (рис. 2.14) и в связи с этим характеризуется высокой пластичностью.
а
б
Рис. 2.14. Структура ковкого чугуна: а – ферритный; б – перлитный (x200; травление 4 % - ным спиртовым раствором азотной кислоты)
Детали из ковкого чугуна получают из отливок белого доэвтектического чугуна (2,4-3,4 % С) путем длительного отжига – томления, поэтому графит ковких чугунов носит название углерод отжига. Отливки должны быть сравнительно небольшими (толщина сечения не должна превышать 40-50 мм), чтобы исключить графитизацию сердцевины при медленном охлаждении массивной детали.
По структуре металлической основы ковкие чугуны бывают ферритными и перлитными.
Отливки из белого чугуна, предназначенные для отжига на ковкий чугун, упаковывают в специальные ящики. Первый этап отжига при температуре 950…970 °С обеспечивает распад цементита, входящего в состав ледебурита, и получение перлитного ковкого чугуна. Получение ферритного ковкого чугуна обеспечивается последующим понижением температуры до 720…740 °С и длительной выдержкой в указанных условиях, во время которой происходит распад цементита перлита с образованием феррита и графита (рис.1.15).
Рис. 1.15. Схема отжига белого чугуна на ковкий,
ферритный и перлитный чугуны
Процесс протекает очень медленно (до 100 часов) и зависит от структуры отливки и ряда технологических факторов. Для ускорения отжига часто чугун модифицируют (алюминием, бором и т.п.), что позволяет сократить время отжига на ферритный ковкий чугун до 24-60 часов.
Ковкие чугуны обозначаются символом КЧ, после которого указывается предел прочности sв и относительное удлинение d : КЧ55-4.
Внутренние напряжение в ковком чугуне полностью снимаются во время отжига.
Таблица 1.5
Механические свойства и химический состав ковких чугунов
Марка чугуна |
σв, МПа, |
δ,% |
Твердость НВ, (кгс/мм2) |
С, % |
Si, % |
Mn, % |
P |
S |
|
|||||||||||||||
Не менее |
Не более, % |
|
||||||||||||||||||||||
|
|
|
Ферритные |
чугуны |
|
|
|
|
|
|
|
|||||||||||||
КЧ 33-8 |
323 |
8 |
100-163 |
2,6-2,9
|
1,0-1,6 |
0,4-0,6 |
0,18 |
0,20 |
||||||||||||||||
КЧ 37-12 |
362 |
12 |
110-163 |
2,4-2,7 |
1,2-1,4 |
0,2-0,4 |
0,12 |
0,06 |
||||||||||||||||
|
|
|
Перлитные |
чугуны |
|
|
|
|
|
|
|
|||||||||||||
КЧ 55-4 |
539 |
4 |
192-241 |
2,5-2,8
|
1,1-1,3 |
0,3-1,0 |
1,10 |
0,20 |
||||||||||||||||
КЧ 65-3 |
637 |
3 |
212-269 |
2,4-2,7 |
1,2-1,4 |
0,3-1,0 |
0,10 |
0,06 |
||||||||||||||||
Ковкие чугуны содержат: углерода – 2,4…3,0 %, кремния – 0,8…1,4 %, марганца – 0,3…1,0 %, фосфора – до 0,2 %, серы – до 0,1 %.
Отливки
выдерживаются в печи при
температуре 950…1000
С в
течении 15…20 часов.
Происходит разложение цементита:
.
Структура после выдержки состоит из аустенита и графита (углерод отжига). При медленном охлаждении в интервале 760…720oС, происходит разложение цементита, входящего в состав перлита, и структура после отжига состоит из феррита и углерода отжига (получается ферритный ковкий чугун).
При относительно быстром охлаждении вторая стадия полностью устраняется, и получается перлитный ковкий чугун.
Отжиг является длительной 70…80 часов и дорогостоящей операцией. В последнее время, в результате усовершенствований, длительность сократилась до 40 часов.
По механическим и технологическим свойствам ковкий чугун занимает промежуточное положение между серым чугуном и сталью. Недостатком ковкого чугуна по сравнению с высокопрочным является ограничение толщины стенок для отливки и необходимость отжига.
Отливки из ковкого чугуна применяют для деталей, работающих при ударных и вибрационных нагрузках.
Из ферритных чугунов изготавливают картеры редукторов, ступицы, крюки, скобы, хомутики, муфты, фланцы.
Из перлитных чугунов, характеризующихся высокой прочностью, достаточной пластичностью, изготавливают вилки карданных валов, звенья и ролики цепей конвейера, тормозные колодки.
Обозначаются индексом КЧ (высокопрочный чугун) и двумя числми, первое из которых показывает значение предела прочности, умноженное на , а второе – относительное удлинение - КЧ 30 - 6.
Отбеленные и другие чугуны
Отбеленные – отливки, поверхность которых состоит из белого чугуна, а внутри серый или высокопрочный чугун.
В составе чугуна 2,8…3,6 % углерода, и пониженное содержание кремния –0,5…0,8 %.
Имеют высокую поверхностную твердость (950…1000 НВ) и очень высокую износостойкость. Используются для изготовления прокатных валов, вагонных колес с отбеленным ободом, шаров для шаровых мельниц.
Для изготовления деталей, работающих в условиях абразивного износа, используются белые чугуны, легированные хромом, хромом и марганцем, хромом и никелем. Отливки из такого чугуна отличаются высокой твердостью и износостойкостью.
Для деталей, работающих в условиях износа при высоких температурах, используют высокохромистые и хромоникелевые чугуны. Жаростойкость достигается легированием чугунов кремнием (5…6 %) и алюминием (1…2 %). Коррозионная стойкость увеличивается легированием хромом, никелем, кремнием.
Для чугунов можно применять термическую обработку.
Чугун с вермикулярным графитом
Перспективным видом чугуна является чугун с вермикулярной (червеобразной) формой графита. Вермикулярный графит представляет собой округлые утолщённые короткие включения, определяющие высокие механические свойства чугуна, более высокие электро- и теплопроводность по сравнению с чугуном с шаровидным графитом.
По типу структуры металлической основы различают:
– ферритные (наиболее пластичные, но наименее прочные);
– ферритно-перлитные;
–перлитные (наиболее прочные) чугуны.
Червеобразная утолщённая форма графита образуется чаще всего в низколегированном чугуне с перлитной металлической основой. Для получения в структуре вермикулярного графита чугун подвергается модифицированию сфероидизирующими присадками, как и высокопрочный чугун с шаровидным графитом, но в меньшем количестве.
Оптимальная форма включений графита получается при остаточном содержании Mg в чугуне 0,015-0,028%. Для исключения пироэффекта и дымовыделения используют различные лигатуры с редкоземельными металлами. Остаточное содержание суммы РЗМ в чугуне должно составлять 0,10-0,20%. Для получения ЧВГ применяют также лигатуры, содержащие одновременно сфероидизирующие (Mg, Се и др.) и десфероидизирующие (Ti, Аl) присадки, а также кальций.
ГОСТ 28394-89 устанавливает четыре марки ЧВГ для изготовления отливок и регламентирует их механические свойства. Эти марки чугуна могут иметь в структуре кроме графита вермикулярной формы не более 40% шаровидного графита.
ЧВГ сочетает в себе положительные свойства чугуна с пластинчатым графитом (высокие литейные свойства и теплопроводность) и высокопрочного чугуна с шаровидным графитом (достаточно высокие прочность и пластичность).
Для ЧВГ характерны также высокие модуль упругости и предел выносливости. Механические свойства ЧВГ определяются в основном формой графита и количественным соотношением включений вермикулярного и шаровидного графита.
Существенным резервом улучшения свойств ЧВГ является термообработка и дополнительное легирование. Применяя ферритизирующий отжиг, можно получить чугун с высокими пластическими свойствами. Нормализация, наоборот, повышает прочностные характеристики ЧВГ. Дело в том, что нормализация существенно повышает количество перлита в структуре металлической основы, однако полностью не устраняет феррит. Для увеличения количества перлита в металлической основе чугуна с целью повышения его прочности чугун легируют медью (0,8-1,0%). Легирование перлитного чугуна марки ЧВГ45 никелем (0,8-1,2%) и молибденом (0,2-0,4%) повышает его теплостойкость и износостойкость.
ЧВГ имеет хорошие технологические свойства. Он лучше обрабатывается резанием, чем чугун с шаровидной формой графита. ЧВГ имеет хорошую жидкотекучесть, равную жидкотекучести серого чугуна с пластинчатым графитом.
Для изготовления отливок применяются чугуны следующих марок: ЧВГ 30, ЧВГ 35, ЧВГ 40, ЧВГ 45.
Условное обозначение марки включает: букву Ч - чугун; буквы ВГ - форма графита (вермикулярный графит) и цифровое обозначение минимального значения временного сопротивления разрыву при растяжении в кгс/мм2.
Механические свойства чугуна в литом состоянии или после термической обработки должны соответствовать нормам, указанным в табл. 1.
Марка чугуна |
Временное сопротивление разрыву при растяжении σв, МПа кгс/мм2) |
Условный предел текучести σ0,2, МПа (кгс/мм2) |
Относительное удлинение δ,% |
Твердость по Бринеллю, НВ |
ЧВГ 30 |
300 (30) |
240 (24) |
3,0 |
130 - 180 |
ЧВГ 35 |
350 (35) |
260 (26) |
2,0 |
140 - 190 |
ЧВГ 40 |
400 (40) |
320 (32) |
1,5 |
170 - 220 |
ЧВГ 45 |
450 (45) |
380 (38) |
0,8 |
190 - 250 |
Антифрикционный чугун.
В некоторых узлах трения, испытывающих динамические нагрузки, нашел применение антифрикционный чугун (табл.1.6).
Таблица 1.6
Марки, химический состав и назначение антифрикционных чугунов
(ГОСТ 1585-85)
Марка |
Химический состав и назначение антифрикционных чугунов |
АЧС-1 Перлитный чугун, легированный хромом (0,2-0,5 %) и медью (0,8-1,6 %); предназначен для изготовления деталей, работающих в паре с закаленным или нормализованным валом АЧС-2 Перлитный чугун, легированный хромом (0,2-0,5 %), никелем (0,2-0,5%), титаном (0,03-0,1%) и медью (0,2-0,5%); назначение - такое же, как и чугуна марки АСЧ-1 АЧС-3 Перлитно-ферритный чугун, легированный титаном (0,03-0,1 %) и медью (0,2-0,5 %); детали из такого чугуна могут работать в паре, как с "сырым", так и с термически обработанным валом АЧС-4 Перлитный чугун, легированный сурьмой (0,04-0,4 %); используется для изготовления деталей, работающих в паре с закаленным или нормализованным валом АЧС-5 Аустенитный чугун, легированный марганцем (7,5-12,5 %) и алюминием (0,4-0,8 %); из этого чугуна изготавливают детали, работающие в особо нагруженных узлах трения в паре с закаленным или нормализованным валом
|
|
АЧС-6 Перлитный пористый чугун, легированный свинцом (0,5-1,0 %) и фосфором (0,5-1,0 %); рекомендуется для производства деталей, работающих в узлах трения с температурой до 300 "С в паре с "сырым" валом АЧВ-1 Перлитный чугун с шаровидным графитом; детали из такого чугуна могут работать в узлах трения с повышенными окружными скоростями в паре с закаленным или нормализованным валом АЧВ-2 Перлитно-ферритный чугун с шаровидным графитом; изготовленные из этого чугуна детали хорошо работают в условиях трения с повышенными окружными скоростями в паре с "сырым" валом АЧК-1 Перлитный чугун с хлопьевидным графитом, легированный медью (1,0-1,5 %); предназначен для изготовления деталей, работающих в паре с термически обработанным валом АЧК-2 Ферритно-перлитный чугун с хлопьевидным графитом; детали из этого чугуна работают в паре с "сырым" валом
|
|
Лекция 12
Виды термической обработки металлов. Основы теории термической обработки стали.
Виды термической обработки металлов.
Превращения, протекающие в структуре стали при нагреве и охлаждении
Механизм основных превращений
Превращение перлита в аустенит
Превращение аустенита в перлит при медленном охлаждении.
Закономерности превращения.
Промежуточное превращение
Виды термической обработки металлов.
Свойства сплава зависят от его структуры. Основным способом, позволяющим изменять структуру, а, следовательно, и свойства является термическая обработка.
Термическая обработка представляет собой совокупность операций нагрева, выдержки и охлаждения, выполняемых в определенной последовательности при определенных режимах, с целью изменения внутреннего строения сплава и получения нужных свойств (представляется в виде графика в осях температура – время).
Различают следующие виды термической обработки:
1. Отжиг 1 рода – отсутствие фазовых превращений в твердом состоянии. Возможен для любых металлов и сплавов.
Нагрев при отжиге первого рода, повышая подвижность атомов, частично или полностью устраняет химическую неоднородность, уменьшает внутреннее напряжения.
Основное значение имеет температура нагрева и время выдержки. Характерным является медленное охлаждение.
Разновидностями отжига первого рода являются:
диффузионный;
рекристаллизационный;
отжиг для снятия напряжения после ковки, сварки, литья.
2. Отжиг II рода – отжиг металлов и сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении.
Проводится для сплавов, в которых имеются полиморфные или эвтектоидные превращения, а также переменная растворимость компонентов в твердом состоянии.
Цель отжига второго рода: получение более равновесной структуры и подготовки ее к дальнейшей термической обработке.
В результате отжига:
измельчается зерно;
повышаются пластичность и вязкость;
снижаются прочность и твердость;
улучшается обрабатываемость резанием.
Характеризуется нагревом до температур выше критических и очень медленным охлаждением, как правило, вместе с печью.
3. Закалка – проводится для сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении, с целью повышение твердости и прочности путем образования неравновесных структур (сорбит, троостит, мартенсит).
Характеризуется нагревом до температур выше критических и высокими скоростями охлаждения
4. Отпуск – проводится с целью снятия внутренних напряжений, снижения твердости и увеличения пластичности и вязкости закаленных сталей.
Характеризуется нагревом до температуры ниже критической А1 . Скорость охлаждения роли не играет. Происходят превращения, уменьшающие степень неравновесности структуры закаленной стали.
Термическую обработку подразделяют на:
предварительную ;
окончательную.
Предварительная – применяется для подготовки структуры и свойств материала для последующих технологических операций (для обработки давлением, улучшения обрабатываемости резанием).
Окончательная – формирует свойства готового изделия.
Превращения, протекающие в структуре стали при нагреве и охлаждении
Любая разновидность термической обработки состоит из комбинации четырех основных превращений, в основе которых лежат стремления системы к минимуму свободной энергии.
1.
Превращение
перлита в аустенит ( П
А),
происходит при нагреве выше критической
температуры А1, минимальной
свободной энергией обладает аустенит.
2. Перлитное превращение - превращение аустенита в перлит (А П), происходит при охлаждении ниже А1, минимальной свободной энергией обладает перлит:
3. Мартенситное превращение - превращение аустенита в мартенсит (А М), происходит при быстром охлаждении ниже температуры нестабильного равновесия
4. Превращение мартенсита в феррито-цементитную смесь (М Ф+Ц) – происходит при любых температурах, т.к. свободная энергия мартенсита больше, чем свободная энергия перлита.
Рассмотрим механизмы превращений.
