Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Eraliev_19_05_16.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.82 Mб
Скачать

29. Запишите уравнения манипулятора в форме Лагранжа-Эйлера?

Полное описание движения манипулятора можно получить, применяя метод Лагранжа-Эйлера для неконсервативных систем. Описав кинематику манипулятора с помощью матричного представления Денавита-Хартенберга, можно получить уравнение динамики. Такое совместное использование Д-Х-представления и метода Лагранжа приводит к компактной векторно-математической форме уравнений движения, удобной для аналитического исследования и допускающей реализацию на ЭВМ.

Вывод уравнений динамики движения манипулятора основан на следующем:

  1. На описании взаимного пространственного расположения систем координат i-го и (i-1)-го звеньев с помощью матрицы преобразования однородных координат . Эта матрица преобразует координаты произвольной точки относительно i-й системы координаты этой же точки относительно (i-1)-й системы координат.

2. На использовании уравнения Лагранжа-Эйлера:

; , (9-9)

где L-функция Лагранжа (L=K-P);

K-полная кинетическая энергии манипулятора;

P-полная потенциальна энергия манипулятора

-обобщённые координаты манипулятора;

-первая производная по времени обобщённых координат;

-обобщённые силы (или моменты), создаваемые в i-м сочленении для реализации заданного движения i-го звена.

Для того, чтобы воспользоваться уравнением Лагранжа-Эйлера, необходимо выбрать систему обобщённых координат. Обобщённые координаты представляют собой набор координат, обеспечивающий, полное описание положения рассматриваемой физической системы в абсолютной системе координат. Существуют различные системы обобщенных координат, пригодные для описания простого манипулятора с вращательными и поступательными сочленениями. Однако, поскольку углы поворотов в сочленениях непосредственно доступны измерению с помощью потенциометров или других датчиков, то они составляют наиболее естественную систему обобщенных координат. В этом случае обобщённые координаты совпадают с присоединенными переменными манипулятора. В частности, если i-е сочленение вращательное, то , если же i-е сочленение поступательное, то .

30. Какие типы управления манипуляторам Вы знаете?

Если динамические уравнения движения манипулятора заданы, целью управления манипулятором является выполнение им движений в соответствии с заданным рабочим критерием.

Проблема управления манипулятором в общем случае сводится к следующим шагам:

  1. к получению его динамических моделей;

  2. к определению закона управления им на основе этих моделей для обеспечения требуемых рабочих и динамических характеристик системы.

Движение манипулятора осуществляется в два этапа:

  1. транспортное движение манипулятора в зону действия;

  2. управление (коррекция) движением по сигналам датчиков обратной связи.

Рассматривая управление манипулятором как задачу формирования траектории движения (рис. 16.1), управление движением можно подразделить на три основных вида:

1. Управление движением сочленений манипулятора.

  • Сервомеханизм звена (схема управления манипулятором робота Пума).

  • Метод вычисления моментов.

  • Оптимальное по быстродействию управление.

  • Управление переменной структурой.

  • Нелинейное независимое управление.

Рисунок 16.1. Общая блок-схема управления манипулятором робота

2. Программное управление движением в декартовом пространстве по скорости, ускорению и силе.

3. Адаптивное управление.

  • Адаптивное управление по заданной модели.

  • Самонастраивающееся адаптивное управление.

  • Адаптивное управление по возмущению с компенсацией по прямой связи.

  • Адаптивное управление программным движением.

Предполагается, что движение вдоль траектории в связанной или декартовой системе координат является функцией времени.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]