- •1.1. Макро- и микроструктура металлических материалов.
- •1.2. Атомно-кристаллическое строение металлов. Типы кристаллических решеток. Анизотропия свойств металлов.
- •1.3. Дефекты кристаллического строения. Прочность бездефектных и реальных кристаллических тел.
- •2.1. Особенности жидкого состояния металлов. Механизм и кинетика кристаллизации. Закономерности образования и роста кристаллов.
- •2.2. Аморфные металлы. Полиморфные превращения в металлах.
- •2.3. Сущность процесса модифицирования.
- •2.4. Строение металлического слитка
- •Тема 3 Диаграммы состояния двойных сплавов.
- •3.1. Понятия фазы, компонента, системы. Определения твердых растворов, химических соединений, механических смесей.
- •3.2. Построение диаграмм состояния. Эвтектическая кристаллизация. Правила отрезков.
- •3.3. Диаграмма состояния системы с полной растворимостью компонентов в твердом состоянии.
- •3.4. Диаграмма состояния системы с ограниченной растворимостью компонентов.
- •3.6. Связь между структурой и свойствами сплавов.
- •4.1. Упругая и пластическая деформация.
- •4.2. Влияние пластической деформации на строение и свойства металла, явление наклепа. Возврат и рекристаллизация. Холодная и горячая пластическая деформация.
- •4.3. Определение механических свойств металлов: твердость; характеристики, определяемые при растяжении, при знакопеременном нагружении; ударная вязкость.
- •5.1. Диаграмма состояния железо-цементит.
- •5.2. Влияние углерода и постоянных примесей на свойства стали. Углеродистые стали. Классификация и маркировка углеродистых сталей.
- •5.3. Чугуны. Влияние химического состава и скорости охлаждения на структуру чугуна. Серый чугун, ковкий чугун, высокопрочный чугун: классификация, маркировка, применение.
- •6.1. Теория термической обработки стали.
- •6.1.2. Превращения переохлажденного аустенита.
- •6.2. Технология термической обработки.
- •1. Полный отжиг
- •2. Неполный отжиг
- •6.2.2. Закалка стали. Прокаливаемость и закаливаемость стали. Поверхностная закалка.
- •6.2.3. Отпуск стали.
- •7.1. Физические основы химико-термической обработки.
- •7.2. Цементация.
- •7.3. Азотирование.
- •7.4. Цианирование и нитроцементация.
- •7.5. Диффузионная металлизация.
- •Тема 8 легированные стали
- •8.1. Влияние легирующих элементов на полиморфные превращения.
- •8.2. Структурные классы легированных сталей.
- •8.3. Маркировка и применение легированных сталей.
- •8.3.1. Конструкционные легированные стали.
- •8.3.2. Инструментальные стали и сплавы. Быстрорежущие стали, штамповые стали. Твердые сплавы.
- •Тема 9 Коррозионно-стойкие, жаропрочные и жаростойкие стали и сплавы.
- •9.1. Коррозия электрохимическая и химическая.
- •9.2. Коррозионно-стойкие стали.
- •9.3. Жаростойкость, жаростойкие стали.
- •9.4. Жаропрочность, жаропрочные стали и сплавы.
- •Тема 10 Цветные металлы и сплавы
- •10.1. Алюминий. Деформируемые и литейные сплавы алюминия.
- •10.2. Медь и ее сплавы.
- •10.3. Титан и сплавы титана.
- •10.4. Магний и магниевые сплавы.
- •Тема 11
- •11.1. Термопластичные и термореактивные пластмассы.
- •11.2. Резины.
- •11.3. Композиционные материалы.
4.1. Упругая и пластическая деформация.
Деформацией называется изменение формы и размеров тела под действием напряжений.
Напряжение – сила, действующая на единицу площади сечения детали.
Напряжения и вызываемые ими деформации могут возникать при действии на тело внешних сил растяжения, сжатия и т.д., а также в результате фазовых (структурных) превращений, усадки и других физико-химических процессов, протекающих в металлах, и связанных с изменением объема.
Деформация металла под действием напряжений может быть упругой и пластической.
Упругой называется деформация, полностью исчезающая после снятия вызывающих ее напряжений.
При упругом деформировании изменяются расстояния между атомами металла в кристаллической решетке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы становятся на прежние места, и деформация исчезает.
Упругая деформация на диаграмме деформации характеризуется линией ОА.
Пластической или остаточной называется деформация после прекращения действия вызвавших ее напряжений. При пластическом деформировании одна часть кристалла перемещается по отношению к другой под действием касательных напряжений. При снятии нагрузок сдвиг остается, т.е. происходит пластическая деформация.
Процесс деформации при достижении высоких напряжений завершается разрушением. Тела разрушаются по сечению не одновременно, а вследствие развития трещин. Разрушение включает три стадии: зарождение трещины, ее распространение через сечение, окончательное разрушение.
Различают хрупкое разрушение – отрыв одних слоев атомов от других под действием нормальных растягивающих напряжений. Отрыв не сопровождается предварительной деформацией. Механизм зарождения трещины одинаков - благодаря скоплению движущихся дислокаций перед препятствием (границы субзерен, фазовые границы), что приводит к концентрации напряжений, достаточной для образования трещины. Когда напряжения достигают определенного значения, размер трещины становится критическим и дальнейший рост осуществляется произвольно.
Для хрупкого разрушения характерна острая, часто ветвящаяся трещина. Величина зоны пластической деформации в устье трещины мала. Скорость распространения хрупкой трещины велика - близка к скорости звука (внезапное, катастрофическое разрушение). Энергоемкость хрупкого разрушения мала, а работа распространения трещины близка к нулю.
Различают транскристаллитное разрушение – трещина распространяется по телу зерна, интеркристаллитное – по границам зерен (всегда хрупкое).
Результатом хрупкого разрушения является блестящий светлый кристаллический излом с ручьистым строением. Хрупкая трещина распространяется по нескольким параллельным плоскостям. Плоскость излома перпендикулярна нормальным напряжениям.
Вязкое разрушение – путем среза под действием касательных напряжений. Ему всегда предшествует значительная пластическая деформация. Трещина тупая раскрывающаяся. Величина пластической зоны впереди трещины велика. Малая скорость распространения трещины. Энергоемкость значительная, энергия расходуется на образование поверхностей раздела и на пластическую деформацию. Большая работа затрачивается на распространение трещины. Поверхность излома негладкая, рассеивает световые лучи, матовая (волокнистый) излом. Плоскость излома располагается под углом.
По излому можно определить характер разрушения.
