- •1.1. Макро- и микроструктура металлических материалов.
- •1.2. Атомно-кристаллическое строение металлов. Типы кристаллических решеток. Анизотропия свойств металлов.
- •1.3. Дефекты кристаллического строения. Прочность бездефектных и реальных кристаллических тел.
- •2.1. Особенности жидкого состояния металлов. Механизм и кинетика кристаллизации. Закономерности образования и роста кристаллов.
- •2.2. Аморфные металлы. Полиморфные превращения в металлах.
- •2.3. Сущность процесса модифицирования.
- •2.4. Строение металлического слитка
- •Тема 3 Диаграммы состояния двойных сплавов.
- •3.1. Понятия фазы, компонента, системы. Определения твердых растворов, химических соединений, механических смесей.
- •3.2. Построение диаграмм состояния. Эвтектическая кристаллизация. Правила отрезков.
- •3.3. Диаграмма состояния системы с полной растворимостью компонентов в твердом состоянии.
- •3.4. Диаграмма состояния системы с ограниченной растворимостью компонентов.
- •3.6. Связь между структурой и свойствами сплавов.
- •4.1. Упругая и пластическая деформация.
- •4.2. Влияние пластической деформации на строение и свойства металла, явление наклепа. Возврат и рекристаллизация. Холодная и горячая пластическая деформация.
- •4.3. Определение механических свойств металлов: твердость; характеристики, определяемые при растяжении, при знакопеременном нагружении; ударная вязкость.
- •5.1. Диаграмма состояния железо-цементит.
- •5.2. Влияние углерода и постоянных примесей на свойства стали. Углеродистые стали. Классификация и маркировка углеродистых сталей.
- •5.3. Чугуны. Влияние химического состава и скорости охлаждения на структуру чугуна. Серый чугун, ковкий чугун, высокопрочный чугун: классификация, маркировка, применение.
- •6.1. Теория термической обработки стали.
- •6.1.2. Превращения переохлажденного аустенита.
- •6.2. Технология термической обработки.
- •1. Полный отжиг
- •2. Неполный отжиг
- •6.2.2. Закалка стали. Прокаливаемость и закаливаемость стали. Поверхностная закалка.
- •6.2.3. Отпуск стали.
- •7.1. Физические основы химико-термической обработки.
- •7.2. Цементация.
- •7.3. Азотирование.
- •7.4. Цианирование и нитроцементация.
- •7.5. Диффузионная металлизация.
- •Тема 8 легированные стали
- •8.1. Влияние легирующих элементов на полиморфные превращения.
- •8.2. Структурные классы легированных сталей.
- •8.3. Маркировка и применение легированных сталей.
- •8.3.1. Конструкционные легированные стали.
- •8.3.2. Инструментальные стали и сплавы. Быстрорежущие стали, штамповые стали. Твердые сплавы.
- •Тема 9 Коррозионно-стойкие, жаропрочные и жаростойкие стали и сплавы.
- •9.1. Коррозия электрохимическая и химическая.
- •9.2. Коррозионно-стойкие стали.
- •9.3. Жаростойкость, жаростойкие стали.
- •9.4. Жаропрочность, жаропрочные стали и сплавы.
- •Тема 10 Цветные металлы и сплавы
- •10.1. Алюминий. Деформируемые и литейные сплавы алюминия.
- •10.2. Медь и ее сплавы.
- •10.3. Титан и сплавы титана.
- •10.4. Магний и магниевые сплавы.
- •Тема 11
- •11.1. Термопластичные и термореактивные пластмассы.
- •11.2. Резины.
- •11.3. Композиционные материалы.
3.2. Построение диаграмм состояния. Эвтектическая кристаллизация. Правила отрезков.
Диаграмма состояния представляет собой графическое изображение состояния сплава. Показывает устойчивые состояния, то есть с минимальной свободной энергией, представляет собой теоретический случай, а в практике используется для рассмотрения превращений при малых скоростях нагрева или охлаждения.
Экспериментальное построение диаграмм
Построение диаграмм состояния наиболее часто осуществляется при помощи термического анализа.
В результате получают серию кривых охлаждения, на которых при температурах фазовых превращений наблюдаются точки перегиба и температурные остановки.
Температуры, соответствующие фазовым превращениям, называют критическими точками.
Начинается охлаждение, и температуру отмечают через определенные промежутки времени. Имея достаточное количество сплавов, и определив в каждом сплаве температуру превращений, можно построить диаграмму состояний.
Для более точного построения диаграммы состояния в дополнении к термическому методу структуру сплавов разного состава и по разному обработанных термически, изучают с помощью микроскопа, рентгеновских лучей; измеряют разнообразнейшие физические свойства сплавов и т.д.
Диаграммы состояния позволяют определить какую структуру будут иметь медленно охлажденные сплавы, а также решить вопрос о том, можно ли добиться изменение микроструктуры в результате термической обработки сплавов (поскольку технологические и эксплуатационные свойства сплавов тесно связаны с их микроструктурой).
Вид диаграммы определяется характером взаимодействий, которые возникают между компонентами в жидком и твердом состояниях.
Диаграмма состояния для сплавов, образующих механические смеси из чистых компонентов (I рода)
Оба компонента в жидком состоянии неограниченно растворимы, а в твердом состоянии нерастворимы и не образуют химических соединений.
Компоненты: вещества А и В (k=2).
Фазы: жидкость L, кристаллы А, кристаллы В (максимально f = 3).
Механическая смесь двух (или более) видов кристаллов, одновременно кристаллизовавшихся из жидкости называется эвтектикой (то есть легкоплавящаяся – греч.)
Структура состояния доэвтектического сплава: А + эвт (А + В), заэвтектического: В + эвт (А + В), эвтектического А+В.
Правило отрезков
Первое положение |
Чтобы определить концентрации компонентов в фазах, через данную точку, характеризующую состояние сплава, проводят горизонтальную линию до пересечения с линиями, ограничивающими данную область; проекции точек пересечения на ось концентраций показывают составы фаз |
|
|
Второе положение |
Для того чтобы определить количественное соотношение фаз, через заданную точку проводят горизонтальную линию. Отрезки этой линии между заданной точкой и точками, определяющими составы фаз, обратно пропорциональны количествам этих фаз. |
Р
ассмотри
сплав состава а при температуре t1
Концентрация компонента В в расплаве при указанной температуре определяется по точке в.
Количество жидкости:
Кол-во кристаллов В:
