- •Энтропия
- •Принцип энергетического сопряжения.
- •Молекулярность элементарного акта реакции.
- •Роль стерического фактора
- •Понятие о теории переходного состояния.
- •Билет 8. Катализ. Гомогенный и гетерогенный катализ. Энергетический профиль каталитической реакции. Особенности каталитической активности ферментов.
- •Уравнения изотермы и изобары химической реакции
- •Физико-химические свойства воды, обусловливающие ее уникальную роль как биорастворителя
- •Билет 11. Растворимость газов в жидкости. Законы Генри и Генри—Дальтона их медико-биологическое значение.
- •Законы Генри и Генри—Дальтона их медико-биологическое значение.
- •Билет 14. Коллигативные свойства разбавленных растворов электролитов. Изотонический коэффициент.
- •Основные положения протолитической теории кислот и оснований Бренстеда-Лоури
- •Связь между константой кислотности и константой основности в сопряженной протолитической паре.
- •Билет 18. Автопротолиз воды. Константа автопротолиза воды. Водородный показатель (pH) как количественная мера активной кислотности и основности. Определение активной концентрации ионов водорода.
- •Водородный показатель (pH) как количественная мера активной кислотности и основности.
- •Билет 19. Гидролиз солей. Механизм гидролиза по катиону, по аниону. Степень и константа гидролиза. Смещение равновесия гидролиза. Медико-биологическое значение гидролиза
- •Степень и константа гидролиза.
- •Медико-биологическое значение гидролиза
- •Билет 20. Гетерогенные реакции в растворах электролитов. Константа растворимости. Условия образования и растворения осадков.
- •Гетерогенные реакции в растворах электролитов
- •Кислотно-основные буферные растворы.
- •П оверхностная энергия Гиббса и поверхностное натяжение.
- •Адсорбция
- •Адсорбционные равновесия на неподвижных границах раздела фаз.
- •Физическая адсорбция и хемосорбция.
- •Адсорбция газов на твердых телах.
- •Адсорбция из растворов.
- •Уравнение Ленгмюра (изотерма Лэнгмюра):
- •Физико-химические основы адсорбционной терапии, хемосорбции, применения в медицине ионитов.
- •Классификация дисперсных систем.
- •Классификация дисперсных систем по степени дисперсности; по агрегатному состоянию фаз; по силе межмолекулярного взаимодействия между дисперсной фазой и дисперсионной средой.
- •Природа коллоидного состояния.
- •Получение и свойства дисперсных систем.
- •Получение суспензий, эмульсий, коллоидных растворов.
- •2.Путём образования плёнок и их разрыва на мелкие капли.
- •Диализ, электродиализ, ультрафильтрация
- •Физико-химические принципы функционирования искусственной почки.
- •Молекулярно-кинетические свойства коллоидно-дисперсных систем: броуновское движение, диффузия, осмотическое давление, седиментационное равновесие.
- •Строение двойного электрического слоя.
- •Электрокинетический потенциал и его зависимость от различных факторов.
- •Билет 26. Устойчивость дисперсных систем. Седиментационная, агрегативная и конденсационная устойчивость лиозолей. Факторы, влияющие на устойчивость лиозолей. Коагуляция.
- •Коагуляция.
- •Уравнения Нернста-Петерса
- •Билет 28. Прогнозирование направления редокс-процессов по величинам редокс- потенциалов. Связь эдс с энергией Гиббса и константой равновесия реакций, протекающих в гальваническом элементе.
- •Прогнозирование направления редокс-процессов по величинам редокс- потенциалов.
- •Связь эдс с энергией Гиббса и константой равновесия реакций, протекающих в гальваническом элементе.
- •Природа химической связи в комплексных соединениях.
- •Изомерия и пространственное строение комплексных соединений.
- •Билет 31. Комплексоны, их применение в медицине. Ионные равновесия в растворах комплексных соединений. Константа нестойкости и устойчивости комплексного иона.
- •Комплексоны, их применение в медицине.
- •Химия биогенных элементов s-блока.
- •Биологическая роль натрия, калия
- •Важнейшие соединения калия и натрия.
- •Химия биогенных элементов s-блока.
- •Биологическая роль кальция, магния.
- •Важнейшие соединения.
- •Биологическая роль.
- •Зависимость окислительно—восстановительных и кислотно—основных свойства соединений хрома и марганца от степени окисления атомов.
- •Химия биогенных элементов p-блока
- •Общая характеристика элементов iva группы.
- •Угольная кислота и ее соли.
- •Применение в медицине соединений фосфора, их биологическая роль.
- •Биологическая роль и применение соединений серы в медицине
- •Галогены.
- •Галогеноводородные кислоты, галогениды.
- •Биологическая роль соединений фтора, хлора, брома, йода.
- •Билет 42. Титриметрический анализ. Химический эквивалент вещества. Молярная концентрация эквивалента вещества. Закон эквивалентов. Точка эквивалентности и способы её фиксирования.
- •1. Индикаторы:
- •Теоретические основы кислотно-основного титрования (метод нейтрализации).
- •Рабочие растворы, индикаторы.
- •Кривые титрования, выбор индикатора.
- •Расчет молярной концентрации эквивалента и титра растворов окислителей и восстановителей в методе йодометрии.
Адсорбционные равновесия на неподвижных границах раздела фаз.
Неподвижные поверхности раздела фаз: твёрдое тело – газ (т-г), твёрдое тело и жидкость (т-ж), твёрдое тело – твёрдое тело (т-т)
Адсорбция обусловлена силами, действующими на поверхности адсорбента. Поверхность твёрдого тела- неоднородна. Она имеет шероховатости и микродефекты, который обуславливают избыточный запас поверхностной энергии Гиббса системы. Силы, действующие на поверхности адсорбента, имеют ту же природу, что и силы молекулярного притяжения. Силовое поле любой молекулярной частицы адсорбент, находящейся в его объёме, полностью компенсировано силовыми полями соседних частиц. Силовые поля частиц адсорбента, расположенных на его поверхности, скомпенсированы частично. Поэтому на поверхности адсорбента действуют остаточные силы, способны притягивать молекулы веществ, находящихся в контакте с поверхностью адсорбента. Адсорбция в первую очередь происходит на участках поверхности с наибольшим локальным запасом поверхностной энергии Гиббса.
На границе адсорбента и адсорбата устанавливается адсорбционное равновесие:
Адсорбент
+ Адсорбат
Адсорбционный комплекс
Физическая адсорбция и хемосорбция.
Физическая адсорбция обусловлена неспецифическими (универсальными) силами межмолекулярного взаимодействия, в основном силами Ван-дер-Ваальса. Отличительная черта физической адсорбции -обратимость, которая обусловлена низкими величинами теплот адсорбции (4 - 40 кДж/моль или 1 - 10 ккал/моль). По своей природе эти взаимодействия относятся к типу электростатических диполь-дипольных взаимодействий и включают
а) дисперсионные силы, порожденные синхронными осцилляциями взаимодействующих диполей, - характерны для адсорбции неполярных молекул (N2, О2, Н2 и инертных газов) на неполярных адсорбентах (типа графита и угля);
б) индукционные силы, порожденные взаимодействием диполя с другим наведенным им диполем, - характерны для адсорбции неполярных молекул (N2, О2,. Н2 и инертных газов) на полярных адсорбентах с ионной связью (типа SiO2 , Al2О3 и др.) и для адсорбции полярных молекул (Н2O, СО2, NH3 и др.) на неполярных адсорбентах и металлах;
в) ориентационные силы, порожденные взаимной ориентацией взаимодействующих диполей, - характерны для адсорбции полярных молекул (Н2О, СО2, NH3 и др.) на полярных адсорбентах с ионной связью (типа SiO2 и др.).
Кроме диполь-дипольных, в физической адсорбции участвуют ион-дипольные и квадрупольные взаимодействия.
Хемосорбция, наоборот, - необратима и характеризуется высокими тепловыми эффектами (40 - 400 кДж/моль), обусловленными образованием поверхностных химических соединений с валентной связью. Хемосорбцию иногда представляют как двумерную химическую реакцию, не выходящую за пределы поверхностного слоя. Например, в результате хемосорбции кислорода на поверхности железа или алюминия образуется пленка продуктов взаимодействия - оксидов, которая защищает металл от дальнейшего окисления.
Адсорбция газов на твердых телах.
Адсорбция газов твёрдыми телами протекает с большой скоростью, поэтому адсорбционное равновесие устанавливается практически мгновенно.
При взаимодействии газа с адсорбентом наряду с адсорбцией, представляющей собой типично поверхностный процесс, может происходить поглощение газа или пара всем объёмом твёрдого тела, а также их конденсация в узких порах. Поглощение вещества всей массой адсорбента называется абсорбцией. Переход поглощаемого газа или пара в жидкое состояние (и даже твёрдое) в узких порах адсорбента называется капиллярной конденсацией (пример – раствор водорода в платине – твёрдый раствор).
Хемосорбция часто протекает только на поверхности сорбента. Например, при поглощении кислорода алюминием на поверхности металла образуется тонка плёнка оксида алюминия. Адсорбция газа на твёрдом теле измеряется количеством газа, адсорбированным единицей массы твёрдого тела (моль/кг или моль/г).
Адсорбция
зависит от температуры, давления и
природы адсорбата, удельной поверхности
и природы адсорбента. На поверхности
твёрдого тела при прочих равных условиях
лучше а
дсорбируются
те газы, которые легче конденсируются
в жидкость. Неполярные адсорбенты лучше
адсорбируют неполярные органические
соединения. Полярные адсорбаты лучше
адсорбируются на поверхности ионных
кристаллов. Адсорбция газов зависит от
давления адсорбата. С ростом давления
адсорбция возрастает до некоторого
предельного значения. Адсорбция газов
– экзотермический процесс. С ростом
температуры адсорбция газов твёрдыми
телами уменьшается.
