Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМП для контрол. раб ПГ, Зик физика.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
7.11 Mб
Скачать

Контрольная работа №1 (по выбору) «Геометрическая оптика. Основы оптики»

Таблица №8

Вариант

Номера задач

1

501

511

521

531

541

551

561

571

2

502

512

522

532

542

552

562

572

3

503

513

523

533

543

553

563

573

4

504

514

524

534

544

554

564

574

5

505

515

525

535

545

555

565

575

6

506

516

526

536

546

556

566

576

7

507

517

527

537

547

557

567

577

8

508

518

528

538

548

558

568

578

9

509

519

529

539

549

559

569

579

0

510

520

530

540

550

560

570

580

2. Физические основы классической механики

2.1. Основные формулы и понятия Кинематика материальной точки твердого тела

Механикой называется раздел физики, посвященный изучению закономерностей простейшей формы движения материи – механического движения. Механическое движение состоит в изменении с течением времени взаимного расположения тел или их частей в пространстве.

Механика состоит из трех основных разделов: статики, кинематики и динамики. В статике рассматривают законы сложения сил и условия равновесия тел. В кинематике исследуют характеристики и закономерности различных типов механического движения тел безотносительно к тем причинам, которые обеспечивают осуществление рассматриваемого типа движения. В динамике изучают влияние взаимодействия между телами на их механическое движение.

Для описания движения тела в пространстве и времени используют физические модели. Простейшая физическая модель тела – материальная точка. Материальной точкой называется тело, формой и размерами которого в данной задаче можно пренебречь.

Если деформация тела при его взаимодействии с другими телами в рассматриваемом процессе пренебрежимо мала, то удобно пользоваться моделью абсолютно твердого тела. Абсолютно твердое тело – тело, расстояние между двумя точками которого в условиях данной задачи можно считать постоянным. Иначе говоря - это тело, формы и размеры которого не изменяются при его движении.

Положение тел в пространстве можно определить только по отношению к другим телам. Абсолютно твердое тело, по отношению к которому рассматривают движение исследуемого тела, называется телом отсчета. Совокупность тела отсчета и связанных с ним системы координат и часов называют системой отсчета.

Радиус-вектор ( ) – вектор, проведенный из начала координат в точку пространства, где расположена материальная точка (тело) (рис. 2.1.).

Кривая линия, по которой движется точка, называется траекторией движения. Длина дуги траектории за данный промежуток времени – путь (S), пройденный материальной точкой (рис. 2.1).

Перемещение ( ) – вектор, проведенный из начального положения точки в ее конечное положение (рис. 2.1).

Рис.2.1.

Схематическое изображение движения материальной точки в пространстве

При движении точки ее радиус-вектор ( ) и координаты ( ) изменяются и являются функциями времени:

(2.1)

Уравнения (2.1) являются кинематическими уравнениями движения точки (уравнения координат движения точки).

В случае движения точки на плоскости уравнение траектории может быть представлено в следующем виде:

Для характеристики движения материальной точки также вводят векторную физическую величину – скорость, определяющую как быстроту движения, так и направление движения в данный момент времени t.

Вектором средней скорости точки в интервале от t до t+t называется

(2.2)

Из формулы (2.2) видно, что вектор средней скорости сонаправлен с вектором перемещения Если t  0, то

- мгновенная скорость.

(2.3)

Вектор мгновенной скорости направлен по касательной к траектории движения тела. В системе СИ единицей измерения скорости является

Скорость – величина относительная. В зависимости от выбора системы отсчета скорость точки различна. В этой связи вводят понятие скорости относительно неподвижной системы отсчета – абсолютная скорость и относительно подвижной системы отсчета – относительная скорость. При переходе из одной системы отсчета в другую можно использовать закон сложения скоростей: , где ­­­­­– абсолютная скорость (например, скорость пловца относительно берега), – относительная скорость (например, скорость пловца относительно реки); – скорость подвижной системы координат относительно неподвижной (например, скорость течения реки).

При неравномерном движении, кроме скорости, необходимо ввести другую характеристику – ускорение – меру быстроты изменения скорости.

Средним ускорением неравномерного движения в интервале t называется . Вектор среднего ускорения сонаправлен с вектором изменения скорости . Ускорением или мгновенным ускорением точки в момент времени t называется величина

.

(2.4)