
2. Дайте определение понятия метод, охарактеризуйте основные типы методов и их взаимосвязь.
Деятельность людей в любой ее форме (научная, практическая и т. д.) определяется целым рядом факторов, Конечный ее результат зависит не только от того, кто действует (субъект) или на что она направлена (объект), но и от того, как совершается данный процесс, какие способы, приемы, средства при этом применяются. Это и есть проблемы метода. В лекции будет идти речь о методах научного познания.
Метод (греч. – способ познания) – “путь к чему-либо”, способ достижения цели, определенным образом упорядоченная деятельность субъекта в любой ее форме.
Основная функция метода – внутренняя организация и регулирование процесса познания или практического преобразования того или иного объекта. Следовательно, метод (в той или иной своей форме) сводится к совокупности определенных правил, приемов, способов, норм познания и действия. Он есть система предписаний, принципов, требований, которые должны ориентировать исследователя в решении конкретной задачи, достижении определенного результата в той или иной сфере деятельности. Метод дисциплинирует поиск истины, позволяет (если правильный) экономить силы и время, двигаться к цели кратчайшим путем. Истинный метод служит своеобразным компасом, по которому субъект познания и действия прокладывает свой путь, позволяет избегать ошибок.
Понятие “научный метод” понимается как “целенаправленный подход, путь, посредством которого достигается поставленная цель. Это комплекс различных познавательных подходов и практических операций, направленных на приобретение научных знаний”. В психологии и педагогике научный метод представляет собой систему подходов и способов, отвечающих предмету и задачам данных наук.
Понятие “метод” применяется в широком и узком смыслах этого слова. В широком смысле слова – оно обозначает познавательный процесс, который включает в себя несколько способов. Например, метод теоретического анализа включает в себя, помимо последнего, синтез, абстрагирование, обобщение и т.д. В узком смысле “метод” означает специальные приемы научной дисциплины. Например, в психологии и педагогике – метод научного наблюдения, метод опроса, экспериментальный метод и др.
Исходным методом научного познания считается наблюдение, т.е. преднамеренное и целенаправленное изучение объектов, опирающееся на чувственные способности человека — ощущения и восприятия. В ходе наблюдения возможно получение информации лишь о внешних, поверхностных сторонах, качествах и признаках изучаемых объектов. Научное наблюдение характеризуется рядом особенностей:
- целенаправленностью и избирательностью (внимание наблюдателя фиксируется только на тех свойствах объекта, которые связаны с предварительно поставленной задачей);
- объективностью, т.е. возможностью контроля результатов наблюдения либо за счет повторного наблюдения, либо использования других методов исследования;
- полнотой, точностью, однозначностью и т.д.
Итогом научных наблюдений всегда является описание исследуемого объекта, фиксируемое в виде текстов, рисунков, схем, графиков, диаграмм и т.д. По мере развития науки наблюдение становится все более сложным и опосредованным за счет использования различных технических устройств, приборов, измерительных инструментов. Техническая оснащенность процедуры наблюдения, с одной стороны, колоссально увеличила ее возможности, а с другой — породила серьезную проблему достоверности знаний, получаемых с помощью приборов. Современные приборы слишком далеко ушли от непосредственных ощущений человека, и поэтому безвозвратно пропала наглядность и образная простота получаемых результатов.
Ведь одно дело — наблюдать в телескоп планеты или звезды, которым от нашего наблюдения ни жарко, ни холодно, и совсем другое — «наблюдать» какой-либо квантовый объект (электрон или протон). Всякое взаимодействие нашего макроприбора с таким микрообъектом нарушает состояние последнего. И в результате мы получаем сведения о квантовом явлении, искаженные вмешательством прибора. В классической физике подобные искажения можно учесть и по результатам измерений установить «истинное» состояние объекта, не зависимое от наблюдателя. В квантовой физике это невозможно. Как любили повторять создатели квантовой механики: «Для того чтобы узнать свойства пудинга, его надо съесть».
Но «съев» квантовый объект, мы его разрушим и, следовательно, не сможем еще раз проверить и уточнить состояние квантовой системы. Поэтому в квантовой физике «наблюдаемое» и «наблюдатель» неотделимы друг от друга. Разумеется, квантовые объекты существуют «сами по себе», независимо от наблюдателей. Однако описание их свойств невозможно без точного указания на тот класс приборов, которыми эти свойства регистрируются. В разных классах приборов эти свойства будут различны (в одних — волновые,других — корпускулярные). Другими словами, квантовая система становится объектом наблюдения только в том случае, если указан точный способ измерения ее свойств.
Измерение — познавательная процедура, в которой устанавливается отношение одной (измеряемой) величины, характеризующей изучаемый объект, к другой, принятой за постоянную (т.е. единицу измерения). Измерение органически связано с наблюдением и в совокупности с ним образует фундаментальную основу естествознания. Именно переход к фиксации количественных (однозначно измеряемых) параметров материальных тел позволил естественным наукам добиться нынешних строгости и точности знания. Измерительные процедуры могут даже опережать теоретическое объяснение: измерять температуру тел научились гораздо раньше, чем поняли физическую природу теплоты.
Еще одним важнейшим методом естественно-научного познания является эксперимент. С введением в практику науки экспериментального метода ученые из наблюдателей превратились в «естествоиспытателей», т.е. данный метод предполагает активное воздействие экспериментатора на изучаемый объект и условия его существования.
Эксперимент (от лат. experimentum — проба, опыт) — способ активного, целенаправленного исследования объектов в контролируемых и управляемых условиях. Эксперимент включает процедуры наблюдения и измерения, однако не сводится к ним. Ведь экспериментатор имеет возможность подбирать необходимые условия наблюдения, комбинировать и варьировать их, добиваясь «чистоты» проявления изучаемых свойств, а также вмешиваться в «естественное» течение исследуемых процессов и даже искусственно их воспроизводить.
Главной задачей эксперимента, как правило, является проверка различных гипотез. Однако в ходе такой проверки нередко обнаруживаются и неожиданные, не предусмотренные гипотезой новые свойства объекта. Классическим примером такого рода являются эксперименты Э. Резерфорда, в 1909 г. бомбардировавшего альфа-частицами (ядрами атомов гелия) металлическую фольгу. Его прибор был несложен: поток альфа-частиц, испускаемый ампулой с радием, проходил через диафрагму, которая выделяла из общей массы узкий пучок частиц и направляла его на экран из сернистого цинка, где наблюдались сцинтилляции (крошечные вспышки при столкновении частиц с экраном). Поставив на пути альфа-частиц фольгу, Э. Резерфорд обнаружил, что вместо резкого изображения узкой щели диафрагмы на экране появляется размытая полоса, т.е. небольшое количество частиц (примерно 2%) отклонялось от прямого пути. Исходя из тогдашних представлений о строении атома (модель Дж. Томсона) это было необъяснимо: в предполагаемой положительно заряженной внутриатомной среде с вкрапленными в нее электронами тяжелым альфа-частицам просто не было преград, ведь по сравнению с ними электроны — не более чем горошины перед пушечными ядрами. А последовавшее далее предположение Э. Резерфорда о том, не могут ли альфа-частицы отскакивать от фольги назад, казалось и вовсе бессмысленным. Однако помощники великого английского физика, просчитав за два года более миллиона сцинтилляций, доказали, что назад отскакивает, как мяч от сетки, примерно одна альфа-частица из восьми тысяч. Предложенное Э. Резерфордом объяснение этого неожиданного феномена известно сегодня как «планетарная модель атома»: отраженные альфа-частицы сталкивались с ядрами атомов алюминия. А небольшое количество отражений определяется тем, что, хотя практически вся масса атома сосредоточена в ядре, оно занимает лишь ничтожную часть его объема (как Солнце в нашей планетной системе). Эти представления ныне настолько привычны, что кажется, будто они совершенно тривиальны. Но чтобы сформулировать их в первый раз, понадобились недюжинные научные терпение и смелость. А опирались они как раз на неопровержимые результаты эксперимента.
Подобные эксперименты называют исследовательскими. Другой тип эксперимента — проверочный — предназначен для подтверждения тех или иных теоретических предположений. Так, существование множества элементарных частиц первоначально было «вычислено» теоретически и лишь позднее подтверждено рядом целенаправленных экспериментов.
Экспериментальный метод, возникнув первоначально (XVII в.) в физике (Г. Галилей, У. Гильберт (1544—1603)), распространился затем на все области естествознания. За четыре прошедших столетия, разумеется, существенно изменилась техническая оснащенность экспериментальной практики. Многие нынешние экспериментальные установки (ускорители заряженных частиц, например) представляют собой огромные и дорогостоящие сооружения. Однако не снизилось значение и мысленных экспериментов, для которых не требуется создание сложных технических средств. В XVII в. Г. Галилей с помощью мысленного эксперимента сформулировал важнейший для физики принцип инерции. А в XX в. другой гений физики — А. Эйнштейн (1879— 1955) — блестяще использовал тот же прием, вообразив свободно падающий в поле тяготения лифт и обнаружив при этом, что, находясь внутри такого лифта, никаким способом нельзя определить, движется ли ускоренно лифт в поле тяготения или он покоится, а поле тяготения при этом исчезает. Результатом этого мысленного эксперимента стал принцип эквивалентности инерционной и гравитационной масс, положенный в основу общей теории относительности.
В целом же все разнообразные виды научных экспериментов составляют мощную эмпирическую базу естествознания. Эксперимент является не только ведущим методом, но и одним из основных критериев истинности научного знания.
Анализ как общенаучный метод познания представляет собой процедуру мысленного (или реального) расчленения, разложения объекта на составные элементы в целях выявления их системных свойств и отношений.
Синтез — операция соединения выделенных в процессе анализа элементов изучаемого объекта в единое целое.
Индукция — способ рассуждения или метод получения знания, при котором общий вывод делается на основе обобщения частных посылок. Индукция может быть полной и неполной. Полная индукция возможна тогда, когда посылки охватывают все явления того или иного класса. Однако такие случаи встречаются редко. Невозможность учесть все явления данного класса заставляет использовать неполную индукцию, конечные выводы которой не имеют строго однозначного характера.
Дедукция — способ рассуждения или метод движения знания от общего к частному, т.е. процесс логического перехода от общих посылок к заключениям о частных случаях. (Помните Шерлока Холмса?) Дедуктивный метод может давать строгое, достоверное знание при условии истинности общих посылок и соблюдении правил логического вывода.
Аналогия — прием познания, при котором наличие сходства, совпадение признаков нетождественных объектов позволяет предположить их сходство и в других признаках. Так, обнаруженные при изучении света явления интерференции и дифракции позволили сделать вывод о его волновой природе, поскольку раньше те же свойства были зафиксированы у звука, волновой характер которого был уже точно установлен. Аналогия — незаменимое средство наглядности, изобразительности мышления. Но еще Аристотель предупреждал, что «аналогия не есть доказательство»! Она может давать лишь предположительное знание.
Абстрагирование — прием мышления, заключающийся в отвлечении от несущественных, незначимых для субъекта познания свойств и отношений исследуемого объекта с одновременным выделением тех его свойств, которые представляются важными и существенными в контексте исследования. Абстрагирование является очень эффективным инструментом теоретических исследований, позволяющим хирургически точно «вырезать» из хаотичного переплетения реальных связей и отношений именно те, которые представляют сущность изучаемого объекта. В рамках обыденного познания «абстрактное мышление» означает, как правило, мышление бедное, бессодержательное, одностороннее. Происходит это потому, что на данном уровне фактически нет средств различения абстракций существенных и несущественных, случайных и необходимых.
Моделирование - метод замещения изучаемого объекта подобным ему по ряду интересующих исследователя свойств и характеристик. Данные, полученные при изучении модели, затем с некоторыми поправками переносятся на реальный объект. Моделирование применяется в основном тогда, когда прямое изучение объекта либо невозможно (очевидно, что феномен «ядерной зимы» в результате массированного применения ядерного оружия кроме как на модели лучше не испытывать), либо связано с непомерными усилиями и затратами. Последствия крупномасштабных вмешательств в природные процессы (поворот рек, например) целесообразно сначала изучить на гидродинамических моделях, а потом уже экспериментировать с реальными природными объектами. Изучать аэродинамические свойства новых конструкций самолетов или проверять их на прочность в аэродинамической трубе намного дешевле с помощью уменьшенных копий - моделей и т.д. Моделирование - метод фактически универсальный. Он может использоваться в системах самых различных уровней. Обычно выделяют такие типы моделирования, как предметное, математическое, логическое, физическое, химическое и пр. Широчайшее распространение в современных условиях получило компьютерное моделирование.
Подчеркнем еще раз, что все вышеперечисленные методы относятся к разряду общенаучных, т.е. применяемых во всех областях научного знания. Кроме них существуют и специально-научные методы, представляющие собой системы сформулированных в императивной форме принципов конкретных научных теории.