Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие ВИЭ-24-11-16 -ветер.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.1 Mб
Скачать

Мощность

В последние годы в мировой ветроэнергетике наблюдается тенденция к увеличению единичной мощности ВЭУ, что объясняется следующими факторами. Ввиду того что с ростом мощности установки снижается стоимость электроэнергии, получаемой с 1 м2 ометаемой поверхности, уменьшаются расходы на эксплуатацию и техническое обслуживание установки, сокращаются площади отчуждаемых земельных участков, растет и эффективность ВЭУ.

Однако укрупнение горизонтально-осевых пропеллерных ВЭУ малоэффективно. Оно имеют верхний предел мощности в З-4 МВт, так как на их лопасти помимо центробежных действуют изгибающие силы, переменные по величине и направлению, что ограничивает размеры лопастей, существенно снижает надежность горизонтально-осевых пропеллерных ВЭУ и сокращает сроки их эксплуатации. Поэтому переход на большие мощности предполагает качественное изменение конструкции ВЭУ. В свете этого наиболее предпочтительным решением является вертикально-осевая схема, теоретический предел мощности которой по современным представлениям на порядок выше теоретического предела мощности горизонтально-осевых пропеллерных ВЭУ.

Расчетная скорость ветра

Как уже отмечалось выше, расчетная скорость ветра горизонтально-осевых пропеллерных ВЭУ обычно находится в пределах 12–15 м/с по условию прочности лопастей на инерционную нагрузку. Произведенные объединением Гидропроект расчеты по определению расчетных скоростей ветра на основании данных более 200 метеостанций России о ветровом потенциале выявили ряд районов (на восточном побережье Северного Ледовитого океана, Охотского моря, в Приморье, на Камчатке, Курильской гряде, в горах Казахстана, Кавказа, Крыма и др.), где экономически обоснованными являются расчетные скорости ветра 18-20 м/с и рабочий диапазон скоростей ветра высокой обеспеченности - до 30 м/с. Как показали исследования казахских специалистов, проведенные для района Джунгарских ворот (здесь при среднегодовой скорости ветра 8 м/с преобладает ветер со скоростью более 15 м/с), начальная скорость ветра слабо влияет на уровень используемой энергии. Так, при изменении начальной скорости ветра от 4.5 до 7.5 м/с выработка электроэнергии снижается менее чем на 2%. Влияние же расчетной скорости ветра на выработку электроэнергии весьма велико. Например, увеличение расчетной скорости ветра с 10.4 до 20 м/с приводит к увеличению выработки более чем в 4 раза. Это свидетельствует о том, что для районов с высоким ветровым потенциалом значения расчетной скорости ветра, принимаемые для обычных ВЭУ, оказываются недостаточными, так как при этом окажутся недоиспользованными слишком большие ветроэнергетические ресурсы.

Как было указано выше, рабочий диапазон скоростей ветра для тихоходных вертикально-осевых ВЭУ повышается до 20-25 м/с, в связи с чем в районах с высоким ветровым потенциалом без всякого сомнения вертикально-осевые ВЭУ заведомо предпочтительнее.

Ветрогенераторы (ветроустановки) ГРЦ-Вертикаль работают в диапазоне скоростей ветра 4-60 м/с, при номинальной (рабочей) скорости 10.4 м/с. По достижении номинала скорость ВЭУ стабилизируется за счет аэродинамических тормозов.