Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие ВИЭ-24-11-16 -ветер.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.1 Mб
Скачать

Экономическая целесообразность: ситуация в мире

↑ вверх

Ветровые энергостанции прежде всего выгодны в своей долгосрочной перспективе, особенно на фоне экологических проблем, удорожания энергоресурса из невозобнавляемых источников и дорогого подключения к традиционной электросети.

Средний возраст износоустойчивости современного ветряка — 25 лет.

Капиталовложения в строительство больших ветропарков в Европе сегодня составляют $1,2-$1,4 тыс. на 1 кВт установленной мощности.

Себестоимость энергии — 3,5-7 центов за 1 кВт/ч (10 лет назад было 16 центов).

При массовом строительстве ветроэлектростанций можно рассчитывать на то, что цена одного киловатт-часа существенно снизится и окажется сравнимой со стоимостью электроэнергии, вырабатываемой ТЭС и ГЭС.

Мировая ветроэнергетика вышла на самостоятельную прибыль и существует без каких-либо дотаций, но при активном госрегулировании.

Ведущие европейские компании выпускают серийно ветродвигатели мощностью 660, 850, 1,8 тыс. и 2 тыс. кВт, предназначенные для работы на энергосеть.

Только датская фирма "Vestas Danich Wind Technology" с начала 1980-х годов установила около 11 тыс. ВЭС по всему миру.

Несколько лет назад появились ветроустановки мегаваттной мощности с размахом лопастей 90 м и более.

По прогнозам самолетостроительного концерна Boeing, в наступившем десятилетии будут созданы ветроагрегаты мощностью 7 МВт (сегодня самые крупные из них вдвое слабее).

Дополнить или исправить

Экономическая целесообразность - ситуация в россии

↑ вверх

Проекты ВЭС, работающих на сеть, для условий, например, очень ветреного Приморья окупаются за 5-7 лет, системы «ветро-дизель» — за 2 года.

В дальнейшем сроки окупаемости ветроэлектростанций будут сокращаться.

Россия обладает мощным ветроэнергетическим потенциалом, оцениваемым в 40 млрд кВт/ч электроэнергии в год, поэтому работа больших и малых ВЭС на огромных российских пространствах могла бы быть высокоэффективна.

Такие районы, как Обская губа, Кольский полуостров, большая часть прибрежной полосы Дальнего Востока, по мировой классификации относятся к самым ветреным зонам.

Среднегодовая скорость ветра на высоте 50-80 м, где располагаются ветроагрегаты современных ВЭС, составляет 11-12 м/с., притом, что «золотым» порогом ветроэнергетике считается скорость ветра 5 м/с (это связано с окупаемостью станций).

Но, несмотря на благоприятные природные условия и большую привлекательность ветроэнергетики, в России до сих пор нет ни огромных ветропарков, ни единичных ВЭС вокруг сельских поселков и дачных участков.

Основная причина — отсутствие инвестиций и законодательной базы.

Что касается цен, то разрыв между российскими и западными ветряками очевиден.

Ветроустановка мощностью 5 кВт российской сборки стоит 12,5 тыс. евро. Зарубежная, с учетом доставки и таможенного оформления, — уже больше 40–60 тыс. евро.

Дополнить или исправить

Тенденции развития технологий в ветроэнергетике

↑ вверх

Департамент Энергетики США (DoE) финансирует разработки и испытания ветрогенераторов мощностью 5-8 МВт как для наземного использования, так и для установке в море.

Норвежская компания Hydro разработала плавающие ветрогенераторы для морских станций большой глубины.

Hydro планирует запустить демонстрационную версию мощностью 3 МВт в ближайшем будущем. Компания планирует в будущем довести мощность турбины до 5 МВт, а диаметр ротора — до 120 метров. Аналогичные разработки ведутся в США.

Компания Magenn разработала аппарат легче воздуха с установленным на нём ветрогенератором.

Аппарат поднимается на высоту 120-300 м.

Нет необходимости строить башню и занимать землю. Аппарат работает в диапазоне скоростей ветра от 1 м/с до 28 м/с. Он может перемещаться в ветряные регионы или быстро устанавливаться в местах катастроф.

Компания Windrotor предлагает новую очень эффективную конструкцию ротора мощной турбины, позволяющую значительно увеличить его размеры и коэффициент использования энергии ветра.

Предполагается, что эта конструкция станет новым поколением роторов ветровых турбин.

Департамент Энергетики США (DoE) в конце 2007 г. объявил о готовности финансирования строительства особо малых (до 5 кВт) ветрогенераторов персонального использования.

В мае 2009 г. в Германии был запущен в эксплуатацию первый ветрогенератор, установленный на гибридной башне компании Advanced Tower Systems (ATS).

Нижняя часть башни высотой 76,5 м построена из железобетона. Верхняя часть высотой 55 м построена из стали. Общая высота ветрогенератора (вместе с лопастями) составляет 180 м.

Увеличение высоты башни позволит увеличить выработку электроэнерии до 20%.

Дополнить или исправить

ВЛИЯЮЩИЕ ФАКТОРЫ: «ЗА» И «ПРОТИВ»

↑ вверх

РЕЛЬЕФ ЗЕМЛИ

На ветровые ресурсы влияет рельеф земли и наличие препятствий, расположенных на высоте до 100 м.

СЕЗОННЫЕ ФАКТОРЫ

Энергия ветра также подчинена сезонным изменениям погоды: более эффективная работа ВЭУ зимой и менее — в летние жаркие месяцы.

ПЛОТНОСТЬ ВОЗДУХА

Количество энергии, произведенной за счет ветра, зависит от плотности воздуха, от площади, охваченной лопастями ветротурбины при вращении, а также от куба скорости ветра.

При нормальном атмосферном давлении и при температуре 15ºС плотность воздуха составляет 1,225 кг/м3.

Однако с увеличением влажности плотность воздуха слегка уменьшается. Из-за того, что зимой воздух более плотный, ветрогенератор будет вырабатывать зимой больше энергии, чем летом, при одинаковой скорости ветра.