- •Спецкурс «биохимия растений». Зачет.
- •1.Особенности азотного обмена у высших растений.
- •2. Нитратредукция. Характеристика нитратредуктазы и нитритредуктазы.
- •3. Ассимиляция аммонийного азота. Характеристика глутаматдегидрогеназы, глутаминсинтетазы и глутамин-оксоглутаратаминотрансферазы.
- •4. Процессы переаминирования, их роль в превращении азота у растений и значение при прорастании и формировании семян.
- •5. Взаимосвязь процессов усвоения азота с дыханием и фотосинтезом.
- •6. Ферментативный гидролиз белков. Протеолитические ферменты растений, их специфичность и активация.
- •7. Белки цитоскелета и клеточной стенки растений.
- •8. Протеиногенные аминокислоты, их синтез в растениях.
- •9. Структура, свойства и распространение в растениях основных представителей моносахаридов и полисахаридов.
- •10. Реакции взаимопревращения моносахаридов: реакции изомеризации, транс-кетолазные, трансальдолазные реакции, альдольная конденсация.
- •2)Стереоизомерия или d и l изоформы:
- •1. Транскетолазные реакции:
- •2. Трансальдолазная реакция:
- •11. Резервные полисахариды растений. Крахмал и инулин. Строение и синтез
- •12. Структурные полисахариды. Полисахариды клеточной стенки. Строение и свойства целлюлозы, маннанов, ксиланов, хитина.
- •13. Гемицеллюлоза и пектиновые вещества (полиуроновые кислоты, альгиновые кислоты, арабинаны, галактаны).
- •14. Аэробный распад углеводов. Гликолиз. Особенности гликолиза у растений.
- •15. Молочнокислое и спиртовое брожение у растений. Их значение.
- •16. Пентозофосфатный окислительный путь (пфоп)(апотомический распад глюкозы). Основные этапы и значение в жизнедеятельности растений.
- •17. Аэробный этап углеводного обмена. Окислительное декарбоксилирование пировиноградной кислоты. Пируватдегидрогеназный комплекс.
- •18. Цикл трикарбоновых кислот. Окислительное фосфорилирование.
- •3 Этапа в синтезе атф:
- •19. Биосинтез моно- и полисахаридов. Цикл Кальвина. Глюконеогенез. Глткозилтрансферазные реакции.
- •20. Липиды и их биологическая роль. Классификация и номенклатура липидов. Структура, свойства и распространение в природе. Глиоксилатный шунт.
- •21. Жирные кислоты, их классификация и номенклатура. Окисление жирных кислот, биосинтез жирных кислот. Мультиферментные комплексы синтеза жирных кислот.
- •22. Изопреноиды. Характеристика, распространение и применение. Эфирные масла и смолы. Характеристика и функции в растении.
- •23. Гемитерпены, монотерпены, сесквитерпены, дитерпены, сестертерпены, тритерпены, тетратерпены, политерпены: основные представители и их функции.
- •24. Биосинтеза изопреноидов: мевалонатный и немевалонатный.
- •25. Классификация растительных фенолов: общая характеристика, представители, распространение, функции в растениях и применение.
- •26. Полимерные фенольные соединения: общая характеристика и применение. Пути биосинтеза растительных фенолов и связь с основным метаболизмом клеток.
- •27. Пути биосинтеза фенольных соединений: шикиматный и ацетатно-малонатный.
- •28. Общая характеристика, применение, классификация и функции алкалоидов.
- •29. Особенности биосинтеза алкалоидов. Исходные метаболиты.
- •30. Характеристика минорных классов веществ вторичного метаболизма растений. Распространение и основные представители.
- •31. Непротеиногенные аминокислоты. Пути их образования и функции.
- •32. Витамины, необходимые для жизнедеятельности растительных организмов.
- •33. Органические кислоты растений алифатического ряда: их распространение у растений и значение для жизнедеятельности.
- •34. Фитогормоны, их химическая структура и функции.
Спецкурс «биохимия растений». Зачет.
1.Особенности азотного обмена у высших растений.
Молекулярный азот не усваивается растениями и может переходить в доступную форму для них только благодаря деятельности микроорганизмов-азотофиксаторов:
- свободноживущие
- симбиотрофные (эффективнее)
Химизм фиксации атмосферного азота
Конечным продуктом фиксации азота является аммиак.
В процессе восстановления азота до аммиака участвует мультиферментный комплекс - нитрогеназа.
Нитрогеназа состоит из двух компонентов:
- MoFe-белок (содержит молибден, железо и серу и осуществляет связывание и восстановление азота)
- Fe-белок (содержит железо и серу; участвует в транспорте электронов от их доноров (ферредоксин) на MoFe-белок)
Источником протонов и электронов для восстановления азота служит дыхательная электрон-транспортная цепь. Это указывает на связь усвоения азота атмосферы с процессами дыхания и фотосинтеза (источника углеводов).
Для
восстановления N2 до NH3 требуется
шесть электронов:
Процесс требует АТФ как источника энергии: для восстановления одной молекулы N2 требуется не менее 12 молекул АТФ.
Для работы нитрогеназы требуются анаэробные условия. Вместе с тем в клетках высшего растения кислород необходим для поддержания дыхания. В связи с этим роль леггемоглобина заключается в связывании О2 в организме бактерий и создании условий для работы нитрогеназы.
Собственно азотный обмен растений.
общее уравнение
Высшие растения поглощают азот из почвы в виде нитратов, нитритов и аммонийных солей; для насекомоядных растений источником дополнительного азота являются белки насекомых и некоторых др беспозвоночных животных.
Корневая система растений хорошо усваивает нитраты, которые после ферментативного восстановления до нитритов превращаются в аммиак.
Ферментативное восстановление нитрата до аммиака:
Первая реакция протекает в цитозоле; катализируется нитратредуктазой, которая восстанавливает нитрат до нитрита НАДН (донор) образуется в процессе дыхания.
Большое влияние на восстановление нитратов оказывает свет, так как используются продукты образующиеся в процессе нециклического фотофосфорелирования (НАДФН2 и АТФ), процесс стимулируется при освещении синим светом нитратредуктаза:
ФАД (флавинаминодинуклеотид)
Гем (цитохромb5)
Молибдопротеин
Образующийся нитрит является очень активным и потенциально токсичным ионом, поэтому он сразу транспортируется из цитозоля в лейкопласты, которые содержат нитритредуктазу, восстанавливающую нитрит до аммония:
Ферредоксин
восстанавливается за счет НАДФН,
образующегося в окислительном
пентозофосфатном пути дыхания.
нитритредуктаза:
2 домена
2 кофактора( железосерный кластер + сирогем )
Группы растений (по способности к нитратредукции):
- восстанавливающие нитрат в корнях (древесные, черника)
- восстанавливающие нитрат в листьях (свекла)
- восстанавливающие нитрат и в корнях, и в листьях (травянистые)
Ассимиляция нитратов в листьях на свету тесно связана с процессом фотосинтеза. Реакции фотосинтеза используются как источник АТФ для синтеза нитрат- и нитритредуктазы и транспорта нитратов, а также как источник восстановителей и субстрата для связывания конечного продукта восстановления – аммиака.
Аммиак также может служить источником азотного питания для растений.
Накопление аммиака в клетках приводит к нежелательным последствиям, поэтому растения обладают способностью обезвреживать аммиак, присоединяя его к органическим кислотам с образованием амидов (глутамина и аспарагина). Это позволяет разделить растения на амидные, образующие аспарагин и глутамин, и аммиачные, образующие соли аммония.
Образование амидов в растении начинается в процессе дыхания, где в качестве промежуточных продуктов образуются органические кислоты α-кетоглутаровая и щавелевоуксусная. Эти кислоты в результате прямого восстановительного аминирования присоединяют аммиак.
HOOC∙CH2CH2∙CO∙COOH + NH3 + HАДН2 ↔ HOOC∙CH2∙CH2CH∙NH2COOH + H2O + НАД
α-кетоглутаровая кислота глутаминовая кислота
HOOC∙CH2∙CO∙COOH + NH3 + HАДН2 ↔ HOOC∙CH2∙CH∙NH2COOH + H2O + НАД
щавелевоуксусная кислота аспарагиновая кислота
Глутаминовая и аспарагиновая кислоты, присоединяя еще одну молекулу аммиака, дают амиды – глутамин и аспарагин. В реакциях образования амидов необходима энергия АТФ и присутствие ионом магния, для активации сентетаз.
