- •Представление числовой информации в эвт. Двоичная арифметика.
- •Кодирование вещественных чисел
- •3) Системы счисления: десятичная, двоичная, шестнадцатеричная. Преобразование чисел из одной системы в другую. Двоичная система счисления
- •Восьмеричная система счисления
- •Шестнадцатеричная система счисления
- •Двоично-восьмеричные и двоично-шестнадцатеричные преобразования
- •4) Логические элементы и, или, не (описание, таблицы истинности, условные графические обозначения).
- •6) Комбинационные устройства эвм. Определение, виды, классификация
- •1. Триггеры
- •4. Селекторные комбинационные устройства:
- •5. Преобразователь кодов (dc):
- •7) Шифраторы и дешифраторы. Определение, назначение, обозначение.
- •8)Мультиплексоры и демультиплексоры. Определение, назначение, обозначение.
- •9)Сумматоры. Определение, назначение, обозначение.
- •10) Последовательностные устройства. Определение, виды, классификация
- •11) Триггеры. Назначение, классификация
- •16) Регистры. Назначение, классификация
- •17 Микропроцессоры. Классификация мп.
- •18) Мп 8086. Общее устройство. Регистры, их назначение.
- •Виды программного обеспечение эвм. Назначение и примеры программ.
10) Последовательностные устройства. Определение, виды, классификация
Последовательностные цифровые устройства (ПЦУ) -характеризуются тем, что выходные сигналы зависят не только от текущих значений входных сигналов, но и от последовательности значений входных сигналов, поступивших на входы в предшествующие моменты времени.
Триггер — простейшее ПЦУ, предназначенное для записи и хранения одноразрядных двоичных чисел. Входные триггера разделяются на информационные и управляющие. Информационные входы обозначаются следующим образом: S — вход для установки в состояние «1»; R — вход для установки в состояние «0»; J — вход для установки в состояние «1» в универсальном триггере; K- вход для установки в состоянии «0» в универсальном триггере; Т — счётный (общий) вход; D — вход для установки в состояние «1» или состояние «0».
Регистр — это последовательное логическое устройство, используемое для хранения n — разрядных двоичных чисел и выполнения преобразований над ними. Регистр представляет собой упорядоченную последовательность триггеров, число которых соответствует числу разрядов в слове (обычно от 4 до 16). На схемах регистры обозначаются буквами RG. Регистр обеспечивает выполнение следующих типичных операций:
приём слова в регистр;
передача слова из регистра;
поразрядные логические операции;
сдвиг слова влево или вправо на заданное число разрядов;
преобразование последовательного кода слова в параллельный и обратно;
установка регистра в начальное состояние (сброс).
Счётчики- представляют более высокий, чем регистры, уровень сложности цифровых микросхем, имеющих внутреннюю память.
Цифровые запоминающими называют устройства,-предназначены для записи, хранения и считывания информации, представленной в цифровом коде. Они представляют собой более сложные цифровые устройства по сравнению с рассмотренным ранее. Каждый код хранится в отдельном элементе, называемом ячейкой памяти.
В ПЗУ-информация заносится раз и навсегда.
11) Триггеры. Назначение, классификация
Триггер (Trigger) – Это устройство с двумя устойчивыми состояниями (логические единица и нуль на соответствующих выходах). Эти состояния триггера при бесперебойном питании и при отсутствии существенных помех и наводок могут сохранятся сколь угодно долго. Под действием управляющих сигналов триггер способен переключаться из одного состояния в другое. Основное назначение триггера – хранение двоичной информации.
Триггер (от английского “тrigger” ) – цифровое устройство, которое может иметь всего два (0 или 1) устойчивых состояния. При этом переход из одного состояния в другое осуществляется максимально быстро, временем переходным процессов на практике принято пренебрегать. Триггеры – это основной элемент для построения различных запоминающих устройств. Их можно использоваться для хранения информации, но объем их память чрезвычайно мал – триггер может хранить биты, отдельные коды или сигналы.
Триггеры способны сохранять свою память только при наличии питающего напряжения. Именно по этому их принято относить к оперативной памяти. Если выключить питающее напряжение и затем его снова включить, триггер переходит в случайное состояние – он может иметь на выходе как логический ноль, так и логическую единицу. Именно поэтому, проводя проектирование схем, надо обязательно предусмотреть вопрос приведения триггера в начальное («стартовое») состояние, исход из которого и проводится дальнейший расчет.
Классификация:
RS-триггер
D-триггер
JK-триггер
Т-триггер
12) RS-триггер. Назначение, обозначение, таблица истинности.
Простейший тип триггеров, на основе которого в дальнейшем создаются другие типы. Он может быть построен как на логических элементах 2ИЛИ-НЕ (прямые входы) или 2И-НЕ (инверсные входы)
Рис. 4. RS-триггер, схема построения и обозначение. А – на элементах ИЛИ-НЕ. Б – на элементах И-НЕ
Самостоятельно, из-за очень низкой помехоустойчивости, в цифровой технике RS-триггеры практически не используются. Исключение – устранение влияния дребезжания контактов, возникающее при коммутации механических переключателей. В этом случае потребуется тумблер (кнопка), имеющий три вывода, при этом один из выводов подключается попеременно к двум остальным. Для получения RS-триггера используют D-триггер, у которого входы D и C замкнуты на «ноль».
Принцип работы приведен на временной диаграмме:
Рис.5. Схема устранения влияния дребезжания контактов
Первым отрицательный сигнал, поступивший на вход –R переводит триггер в «0»-состояние, а первый отрицательный сигнал на на входе –S перебрасывает триггер в состояние единицы. Все остальные сигналы, которые вызваны дребезгом контактов, уже не смогут никак повлиять на триггер. При данной схеме подключения переключателя его верхнее положение будет соответствовать единице на выходе триггера, нижнее – нулю.
Рис. 6. RS-триггер (микросхема 155ТМ2)
RS-триггер – асинхронный, но возникают случаи, когда есть необходимость зафиксировать (сохранить) записанную информацию. Для этого используют синхронный (синхронизируемый) RS-триггер, который в этом случае состоит из двух частей: обычного RS-триггера и схемы управления.
Рис.7. Синхронизируемый RS-триггер
При такой схеме, пока на входе С=0, значение импульсов, поступающих на Х1 и Х2 не имеет значение, RS-триггер находится в режиме «хранение». При С=1 триггер активизируется и переходит в режим записи. Временная диаграмма представлена на рисунке ниже:
RS триггер получил название по названию своих входов. Вход S (Set — установить англ.) позволяет устанавливать выход триггера Q в единичное состояние (записывать единицу). Вход R (Reset — сбросить англ.) позволяет сбрасывать выход триггера Q (Quit — выход англ.) в нулевое состояние (записывать ноль).
Таблица 1. Таблица истинности RS триггера.
R |
S |
Q(t) |
Q(t+1) |
Пояснения |
0 |
0 |
0 |
0 |
Режим хранения информации R=S=0 |
0 |
0 |
1 |
1 |
|
0 |
1 |
0 |
1 |
Режим установки единицы S=1 |
0 |
1 |
1 |
1 |
|
1 |
0 |
0 |
0 |
Режим записи нуля R=1 |
1 |
0 |
1 |
0 |
|
1 |
1 |
0 |
* |
R=S=1 запрещенная комбинация |
1 |
1 |
1 |
* |
13) D-триггер. Назначение, обозначение, диаграмма работы.
Триггер задержки, который используют для создания регистров сдвига и регистров хранения, неотъемлемая часть любого микропроцессора.
Рис. 9. Схема D-тригера
Имеет два входа – информационный и синхронизации. При состоянии С=0 тригер устойчив и при этом сигнал на выходе не зависит от сигналов, поступающих на информационный вход. При С=1 на прямом выходе информация будет точно повторять ту информацию, которая подается на вход D. На временной диаграмме приведен принцип работы D-триггера
Рис.10. D-триггер. а) схематическое изображение б) временная диаграмма работы
Таблица истинности D-триггера:
Рис. 11
14) T-триггер. Назначение, обозначение, диаграмма работы
Другое название – счетные триггеры, на основе которых создают двоичные счетчики и делители частоты. Триггеры такого типа имеют только один вход. Принцип его работы – когда импульс поступает на вход тригерра, его состояние меняется на противоположное, при поступлении второго импульса – возвращается в исходное.
Ниже приведена временная диаграмма работы Т-триггера
Рис. 16. Временная диаграмма делителя частоты на основе Т-триггера
Из неё становится понятно, почему Т-тригер называют делителем частоты. Переключение триггера происходит в момент, когда на вход поступает передний фронт синхроимпульса. В результате частота, с которой следуют импульсы на выходе триггера, оказывается в 2 раза меньше исходной – частоты синхроимпульсов, поступающих на вход. Если установка одного счетного триггера позволяет частоту импульсов разделить на два, то два последовательно подключенных триггера, соответственно, уменьшат эту частоту в 4 раза. Ниже приведен пример получения Т-тригерра из JK-триггера:
Рис. 17. Т-тригер на основе JK-триггера
У
словно-графическое
обозначение T триггера
15) JK-триггер. Назначение, обозначение, таблица истинности.
По принципу работы JK-триггер практически полностью соответствует RS-триггеру, но при этом удалось избежать неопределенности, вызванной при одновременном поступлении на вход двух «единиц».
Рис. 12. Графическое изображение JK-триггера
Рис.13. JK-триггер на входе с логикой 3И
В этом случае JK-триггер переходит в режим счетного триггера. На практике это приводит к тому, что при одновременном поступлении на вход «единичных» сигналов, триггер меняет свое состояние – на противоположное. Ниже приводится таблица истинности для JK-триггера:
Таблица истинности jk триггера.
С |
K |
J |
Q(t) |
Q(t+1) |
Пояснения |
0 |
x |
x |
0 |
0 |
Режим хранения информации |
0 |
x |
x |
1 |
1 |
|
1 |
0 |
0 |
0 |
0 |
Режим хранения информации |
1 |
0 |
0 |
1 |
1 |
|
1 |
0 |
1 |
0 |
1 |
Режим установки единицы J=1 |
1 |
0 |
1 |
1 |
1 |
|
1 |
1 |
0 |
0 |
0 |
Режим записи нуля K=1 |
1 |
1 |
0 |
1 |
0 |
|
1 |
1 |
1 |
0 |
1 |
K=J=1 счетный режим триггера |
1 |
1 |
1 |
1 |
0 |
JK триггеры – очень универсальные устройства, при этом их универсальность носит двойной характер. С одной стороны, эти триггеры успешно используются для цифровых устройствах, так сказать, в чистом виде: в цифровых счетчиках, регистрах, делителях частоты и т.д. С другой стороны – очень легко из JK-триггера, соединив определенные выводы, получить любой необходимый тип триггера.
