Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_20-40 (2).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
325.69 Кб
Скачать

27. Теплоусвоение внутренней поверхности и слоя материала. Коэффициенты теплоусвоения.

Отношение амплитуды колебания теплового потока АQ, воздействующего на внутреннюю поверхность ограждения, к амплитуде колебаний температуры на этой поверхности Аτ называется коэффициентом теплоусвоения внутренней поверхности ограждения:

(5.11)

Коэффициент теплоусвоения внутренней поверхности ограждения имеет размерность Вт/(м2.оС). Коэффициент теплоусвоения внутренней поверхности ограждения возрастает с уменьшением периода Т колебаний теплового потока, и зависит главным образом от теплофизических характеристик материалов слоев, из которых состоит ограждение. Чем больше величина коэффициента теплоусвоения внутренней поверхности ограждения Yв.п при одной и той же величине AQ, тем меньше будет амплитуда колебаний температуры Аτ на этой поверхности.

Если представить себе полуограниченный массив какого-либо однородного материала, на плоскую поверхность которого воздействует гармонический тепловой поток с амплитудой АQ, то колебания температуры этой поверхности тоже будут гармоническими. Обозначим амплитуду этих колебаний Аτ. Чем более теплоустойчив материал, тем меньше амплитуда его колебаний. Отношение амплитуд АQ к Аτ служит характеристикой теплоустойчивости материала и называется коэффициентом теплоусвоения материала s:

(5.7)

Таким образом, коэффициент теплоусвоения материала характеризует способность материала более или менее интенсивно воспринимать теплоту при колебаниях температуры на его поверхности. Коэффициент теплоусвоения материала имеет размерность, Вт/(м2.оС). Величина коэффициента теплоусвоения зависит от его теплофизических свойств и периода Т, с которым происходят колебания воздействующего теплового потока:

(5.8)

Значения большого числа строительных материалов приведено в [4] для суточного периода колебаний. При суточном периоде коэффициент теплоусвоения материала равен Вт/(м2.оС). Формула (5.8) показывает, что коэффициент теплоусвоения материала увеличивается с уменьшением периода Т . В пределе, когда Т=0,т.е. колебания теплового потока отсутствуют, s→∞. В этом случае по формуле (5.7) получим, что Аτ=0, то есть колебания температуры на внутренней поверхности полуограниченного массива будут отсутствовать, что относится к стационарному режиму.

28. Схема колебания температуры в толще ограждения.

Важной практической задачей является расчет распределения температуры по сечению ограждения (рис.7). Из дифференциального уравнения (2.1) следует, что оно линейно относительно сопротивления теплопередаче, поэтому можно записать температуру tx в любом сечении ограждения:

, (2.31)

где Rх-в и Rх-н – сопротивления теплопередаче соответственно от внутреннего воздуха до точки х и от наружного воздуха до точки х, м2.оС/Вт.

Рис. 7. распределение температуры в многослойной стенке. а) в масштабе толщин слоев, б) в масштабе термических сопротивлений

Однако выражение (2.30) относится к ограждению без возмущающих одномерность теплового потока. Для реального ограждения, характеризуемого приведенным сопротивлением теплопередаче при расчете распределения температуры по сечению ограждения надо учитывать уменьшение сопротивлений теплопередаче Rх-в и Rх-н с помощью коэффициента теплотехнической однородности:

. (2.32)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]