- •Основные условные обозначения сокращения и индексы Основные условные обозначения
- •Основные сокращения
- •Индексы
- •Введение
- •1. Физиологические основы высотных полетов
- •1.1. Основные свойства земной атмосферы
- •1.2. Основы физиологии дыхания человека
- •1.3. Влияние пониженного давления на организм человека
- •1.4. Воздействие динамических факторов на организм человека
- •2. Бортовое кислородное оборудование
- •2.1. Назначение и требования, предъявляемые к кислородному оборудованию самолетов
- •2.2. Источники кислорода
- •2.3. Классификация кислородных систем и приборов
- •2.4. Кислородные приборы с непрерывной подачей кислорода
- •2.5. Кислородные приборы с периодической подачей кислорода
- •2.6. Кислородные маски
- •2.7. Личное снаряжение летчика
- •2.8. Запас кислорода на борту самолета
- •3. ГермокабиНы самолетов
- •3.1. Схемы герметических кабин
- •3.2. Требования, предъявляемые к атмосфере кабины самолета
- •3.3. Характеристики герметичности кабины
- •3.4. Элементы конструкции герметических кабин
- •3.5. Проверка герметичности кабин
- •3.6. Способы регулирования давления воздуха в гк
- •3.7. Источники наддува гк
- •3.8. Программы изменения давления воздуха в гк самолетов
- •3.9. Агрегаты оборудования герметической кабины
- •3.10. Сетевые регуляторы давления
- •3.11. Защитные устройства гермокабины (гк)
- •4. Системы кондиционирования воздуха на самолетах
- •4.1. Назначение систем кондиционирования воздуха
- •4.2. Скв на легком скоростном самолете
- •4.3. Тепловой режим кабин и отсеков ла
- •4.4. Теплоизоляция стенок кабин
- •4.5. Способы обогрева кабин
- •4.6. Основные элементы авиационных скв, их устройство и принцип действия
- •4.6.1. Теплообменные аппараты
- •4.6.2. Осушение воздуха в системах кондиционирования
- •4.6.3. Увлажнители воздуха в системе кондиционирования
- •4.7. Регулирование температуры воздуха в кабине
- •5. Гидравлические системы самолетов
- •5.1. Общие положения и назначение гидравлических систем самолетов
- •5.2. Роторные насосы
- •5.2.1. Пластинчатые насосы
- •5.2.2. Шестеренные насосы
- •5.2.3. Аксиально - роторные насосы
- •5.3. Гидравлические аккумуляторы
- •5.4. Силовые приводы
- •5.5. Гидравлические следящие устройства
- •5.6. Агрегаты регулирования потока рабочего тела по расходу и давлению
- •5.7. Методы разгрузки насосов
- •6. Противопожарное оборудование
- •6.1. Особенности возникновения пожара
- •6.2. Меры пожарной безопасности
- •6.4. Способы пожаротушения и возможности их применения в салонах летательных аппаратов
- •6.5. Системы защиты ла от взрыва
- •7. Противообледенительное оборудование
- •7.1. Основные факторы обледенения
- •7.2. Виды и формы льдообразований
- •7.3. Влияние обледенения на летные характеристики и безопасность полетов ла
- •7.4. Сигнализаторы обледенения
- •7.5. Способы и системы защиты ла от обледенения
- •7.5.1. Механические противообледенительные системы
- •7.5.2. Жидкостная противообледенительная система.
- •7.5.3. Тепловые пос
- •8. Список литературы
- •Оглавление
7.2. Виды и формы льдообразований
Ледяные наросты, образующиеся на частях летательных аппаратов, весьма различны и зависят от воздействия комплекса многих факторов, таких как размер переохлажденных капель, температура среды и скорость полета. Все многообразие встречающихся льдообразований можно классифицировать по форме и характеру внешней поверхности. Наиболее распространенные формы образования льда на поверхности летательного аппарата представлены на рис.7.2.
|
Рис.7.2. Формы образования льда. а – клинообразна; б – желобообразная; в – рогообразная; г - промежуточная |
Жолобооразный ледяной нарост образуется при относительно небольших отрицательных температурах наружного воздуха от (0 до -7)°С. Его форма объясняется тем, что в этих условиях капли воды замерзают не сразу, а растекаются по поверхности. В результате растекания водяных капель по поверхности ЛА образуются два ледяных барьера, в значительной степени искажающих форму профиля. Если скорость полета ЛА достаточно велика, для того чтобы температура торможения потока в области передней кромки профиля была положительной, то образуется разновидность жолобообразной формы – рогообразный нарост, вызванный кинетическим нагревом.
Характерной чертой этого вида льдообразования является его значительное распространение по хорде, т. е. большая зона захвата. Лед, образующийся в этом случае на поверхности ЛА, как правило, прозрачный, стекловидный и не имеет воздушных включений.
В диапазоне температур окружающего воздуха от -7°С до -10°С равновероятно образование льда любой из указанных, а также промежуточных форм.
Клинообразная форма нароста образуется при температуре наружного воздуха (-10...-15)°С и ниже. В этом случае капли воды, попадающие на поверхность ЛА, замерзают практически мгновенно. Характерным свойством такого льда является практически полное отсутствие зоны растекания капель. Между замерзшими каплями остаются воздушные полости, поэтому на вид такой лед обычно бывает матовым, имеет шероховатую поверхность, и молочно-белый цвет.
Кроме рассмотренных видов «капельного» обледенения, известно обледенение в виде инея, т. е. легкого мелкокристаллического налета на поверхности, возникающего в результате, сублимации водяного пара. Данный вид обледенения особой опасности для аэродинамики летательных аппаратов не представляет.
7.3. Влияние обледенения на летные характеристики и безопасность полетов ла
Обычно обледенению подвержены следующие поверхности агрегатов ЛА:
- передние кромки крыла и оперения;
- входные кромки воздухозаборников двигателей;
- ВНА компрессора двигателя или при его отсутствии первые ступени компрессора;
- лопасти и обтекатели воздушных винтов турбовинтовых или винто-вентиляторных двигателей;
- лопасти несущих и рулевых винтов вертолетов;
- остекление кабины экипажа;
- обтекатели радиолокационных и радиосвязных антенн;
- датчики пилотажно-навигационных приборов, выходящие в поток.
Обледенение крыла и оперения оказывает большое влияние на летные характеристики, устойчивость и управляемость самолета. Искажение формы и появление неровностей и шероховатости на поверхности носовой части профиля существенно влияют на подъемную силу и сопротивление крыла. В общем приросте сопротивления самолета при обледенении доля крыла и оперения составляет до 70...80%.
В случае обледенения возрастает не только сопротивление ЛА и снижается его качество, но и существенно уменьшается величина максимального коэффициента подъемной силы Су maх (рис. 7.3 и 7.4). Величина критического угла атаки уменьшается на (6...8)°. Это приводит к срыву потока на несущей поверхности и снижению максимальное значение коэффициента подъемной силы в 1,5... 1,8 раза.
|
|
Рис. 7.3. Изменение поляры профиля при обледенении |
Рис. 7.4. Зависимость критического угла атаки от характера обледенения |
Уменьшение толщины профиля и заострение его передней кромки увеличивают чувствительность профиля к обледенению, т. е вызывают срыв потока на меньшем угле атаки. Поэтому на малых скоростях полета реактивные сверхзвуковые самолеты при обледенении будут находиться в несравненно худших условиях, чем самолеты с дозвуковыми скоростями полета.
Горизонтальное оперение на взлетно-посадочных скоростях обычно обтекается под отрицательными углами атаки. Обледенение его, уменьшая критический угол атаки при относительно большой скорости полета и малой перегрузке, может уже при малых отрицательных углах атаки привести к срыву потока.
Уменьшить опасность срыва при обледенении горизонтального оперения можно с помощью ряда конструктивных мер: увеличением площади и плеча подъемной силы стабилизатора, применением более несущих (несимметричных) профилей, профилированием щелей на стабилизаторе перед рулем высоты, выносом стабилизатора из зоны интенсивного скоса потока за крылом и уменьшением эффективного удлинения стабилизатора.
К потере управляемости самолета может привести обледенение щелей органов управления, передних кромок рулей, элеронов, закрылков, стыков секций предкрылков, примерзание органов управления при полете в условиях переохлажденного дождя или мокрого снега.
|
Рис. 7.5. Влияние обледенения на КПД воздушного винта: 1 – без обледенения; 2 – при обледене- нии |
Обледенение лопаток ВНА или первых ступеней компрессора двигателя может привести к самопроизвольному сбрасыванию ледяных наростов. Возникающий дисбаланс ротора вызывает появление вибраций. Причем уровень этого дисбаланса может быть таким, что он может привести к разрушению подшипников ротора и всего двигателя.
Обледенение воздушных винтов по формам и видам образующегося льда мало отличается от обледенения крыла и оперения. Однако протяженность зоны обледенения по хорде лопасти может достигать 25...21% ее длины. Протяженность зоны обледенения по радиусу винта составляет 40...60%, считая от оси вращения. Концевые сечения обледенению не подвергаются из-за аэродинамического нагрева и повышенного уровня вибраций. Обледенение винта приводит к падению его КПД на 12...16% (рис. 7.5) и соответствующему уменьшению скорости полета на 20...30 км/ч (только за счет обледенения).
|
Рис. 7.6. Схема обледенения лопасти несущего винта при горизонтальном полете вертолета |
В зоне обратного обтекания интенсивность обледенения по передней кромке очень невелика и лишь слегка возрастает вдоль лопасти (рис. 7.6). Далее она начинает довольно быстро возрастать и, начиная с некоторого радиуса и до конца лопасти, возрастает примерно пропорционально расстоянию от оси вращения. Ближе к концевым зонам обледенение отсутствует, что вызывается сбросом льда при воздействии вибрации. Кроме того, обледенению подвергаются втулка и все детали управления винтом. Обледенение винта вызывает динамическую несбалансированность. При этом обычно ухудшается управляемость и, наконец, может произойти потеря устойчивости вертолета.
Обледенение остекления кабины экипажа, обтекателей антенн и датчиков пилотажно-навигационных приборов приводит к усложнению условий полета и созданию неблагоприятной обстановки для работы экипажа.
Из изложенного ясно, что для обеспечения безопасности полетов и повышения их регулярности ЛА должны оснащаться ПОС, защищающей указанные выше поверхности и агрегаты самолета или вертолета. Типовая схема зон защиты самолета от обледенения приведена на рис. 7.7.
