- •Основные условные обозначения сокращения и индексы Основные условные обозначения
- •Основные сокращения
- •Индексы
- •Введение
- •1. Физиологические основы высотных полетов
- •1.1. Основные свойства земной атмосферы
- •1.2. Основы физиологии дыхания человека
- •1.3. Влияние пониженного давления на организм человека
- •1.4. Воздействие динамических факторов на организм человека
- •2. Бортовое кислородное оборудование
- •2.1. Назначение и требования, предъявляемые к кислородному оборудованию самолетов
- •2.2. Источники кислорода
- •2.3. Классификация кислородных систем и приборов
- •2.4. Кислородные приборы с непрерывной подачей кислорода
- •2.5. Кислородные приборы с периодической подачей кислорода
- •2.6. Кислородные маски
- •2.7. Личное снаряжение летчика
- •2.8. Запас кислорода на борту самолета
- •3. ГермокабиНы самолетов
- •3.1. Схемы герметических кабин
- •3.2. Требования, предъявляемые к атмосфере кабины самолета
- •3.3. Характеристики герметичности кабины
- •3.4. Элементы конструкции герметических кабин
- •3.5. Проверка герметичности кабин
- •3.6. Способы регулирования давления воздуха в гк
- •3.7. Источники наддува гк
- •3.8. Программы изменения давления воздуха в гк самолетов
- •3.9. Агрегаты оборудования герметической кабины
- •3.10. Сетевые регуляторы давления
- •3.11. Защитные устройства гермокабины (гк)
- •4. Системы кондиционирования воздуха на самолетах
- •4.1. Назначение систем кондиционирования воздуха
- •4.2. Скв на легком скоростном самолете
- •4.3. Тепловой режим кабин и отсеков ла
- •4.4. Теплоизоляция стенок кабин
- •4.5. Способы обогрева кабин
- •4.6. Основные элементы авиационных скв, их устройство и принцип действия
- •4.6.1. Теплообменные аппараты
- •4.6.2. Осушение воздуха в системах кондиционирования
- •4.6.3. Увлажнители воздуха в системе кондиционирования
- •4.7. Регулирование температуры воздуха в кабине
- •5. Гидравлические системы самолетов
- •5.1. Общие положения и назначение гидравлических систем самолетов
- •5.2. Роторные насосы
- •5.2.1. Пластинчатые насосы
- •5.2.2. Шестеренные насосы
- •5.2.3. Аксиально - роторные насосы
- •5.3. Гидравлические аккумуляторы
- •5.4. Силовые приводы
- •5.5. Гидравлические следящие устройства
- •5.6. Агрегаты регулирования потока рабочего тела по расходу и давлению
- •5.7. Методы разгрузки насосов
- •6. Противопожарное оборудование
- •6.1. Особенности возникновения пожара
- •6.2. Меры пожарной безопасности
- •6.4. Способы пожаротушения и возможности их применения в салонах летательных аппаратов
- •6.5. Системы защиты ла от взрыва
- •7. Противообледенительное оборудование
- •7.1. Основные факторы обледенения
- •7.2. Виды и формы льдообразований
- •7.3. Влияние обледенения на летные характеристики и безопасность полетов ла
- •7.4. Сигнализаторы обледенения
- •7.5. Способы и системы защиты ла от обледенения
- •7.5.1. Механические противообледенительные системы
- •7.5.2. Жидкостная противообледенительная система.
- •7.5.3. Тепловые пос
- •8. Список литературы
- •Оглавление
5.2. Роторные насосы
К источникам питания гидросистем относятся объемные гидронасосы. Они преобразуют механическую энергию привода в энергию давления движущейся жидкости.
Принцип действия объемного насоса существенно отличается от принципа действия насоса лопастного.
Объемным насосом называется насос, в котором перемещение жидкости осуществляется путем ее вытеснения из рабочих камер.
Рабочая камера объемного насоса – это пространство, попеременно сообщающееся с приемной (всасывающей) полостью насоса при заполнении и с отдающей (напорной) полостью при вытеснении. В объемном насосе может быть одна или несколько рабочих камер.
Особенность объемного насоса заключается:
- в периодичности подачи определенного объема жидкости из всасывающего канала в напорный с одновременным повышением давления жидкости, поэтому подача объемного насоса всегда является неравномерной;
- приемная полость в них всегда герметически отделена от нагнетающей полости;
- обладают принципом самовсасывания.
Роторные насосы являются тем классом насосов, который в настоящее время нашел широкое применение в авиационной технике. Все эти насосы, различные в конструктивном отношении, имеют между собой много общего в рабочем процессе и в характеристиках. Упрощенная классификация роторных насосов представлена на рис. 5.2.
|
Рис 5.2. Классификация роторных насосов. |
Для рабочего процесса роторных насосов характерным является, во-первых, перенос рабочих камер из приемной полости насоса в нагнетающую полость и, во-вторых, вращательное или более сложное (вращательно-поступательное) абсолютное движение вытеснителей.
Характерной особенностью всех роторных насосов, обусловленной их процессом вытеснения, является отсутствие клапанного распределения жидкости. В связи с отсутствием всасывающих и напорных клапанов, роторные насосы обладают свойством обратимости, т. е. способны работать в качестве гидродвигателей (гидромоторов), когда к ним подводится жидкость под давлением.
Роторные насосы являются значительно более быстроходными, чем поршневые, что также связано с отсутствием у них клапанного распределения. В настоящее время роторные насосы эксплуатируются с частотой вращения до 3000…5000 об/мин, а в отдельных случаях и более. Рабочий процесс каждого элемента роторного насоса складывается из следующих трех этапов:
1) заполнение рабочих камер жидкостью;
2) замыкание рабочих камер, т. е. изоляция от приемной и отдающей плоскостей насоса, и перенос их из приемной полости в отдающую;
3) вытеснение жидкости из рабочих камер.
В дальнейшем при рассмотрении основных разновидностей роторных насосов эти этапы рабочего процесса и другие особенности роторных насосов будут показаны на конкретных схемах.
5.2.1. Пластинчатые насосы
Пластинчатые насосы в авиации часто применяются в виде четырехпластинчатого агрегата с плоскостной кинематикой (см. рис. 5.3.). Ротор представляет собой полый цилиндр с радиальными прорезями, в которых скользят пластины-вытеснители.
Ротор расположен эксцентрично относительно внутренней цилиндрической поверхности статора, благодаря чему пластины при вращении ротора совершают возвратно-поступательные перемещения относительно ротора. Под действием центробежных сил пластины своими внешними торцами прижимаются к внутренней поверхности статора и скользят по ней, а внутренними торцами обкатываются по так называемому плавающему валику, не имеющему подшипников.
|
Рис. 5.3. Схема пластинчатого насоса |
Обозначения:
R – радиус внутренней поверхности статора;
е – эксцентриситет, т. е. расстояние между осями ротора и статора;
z – количество пластин (вытеснителей), равное числу рабочих камер в насосе;
b – длина пластин (в осевом направлении);
δ – толщина пластин;
n – количество оборотов ротора в мин.
Полный объем рабочей камеры равный разности площадей в поперечном сечении корпуса насоса и его ротора приблизительно выражается следующей формулой:
Q = [π (2R – e) – 2 δz] be, м3/с,
а осредненная теоретическая подача в секунду будет равна
Q = [π (2R – e) – 2δz] (ben) / 60, м3/с
Так как в пластинчатом насосе путь переноса рабочей камеры сведен до минимума, а разделение приемной и отдающей полостей осуществляется лишь контактом торца пластины и статора, то степень герметичности в насосе невелика. Вследствие этого и давления, создаваемые пластинчатым насосом, обычно ниже, чем давления, создаваемые другими роторными насосами.
Насосы, выполненные по указанной схеме, применяются в качестве насосов подкачки масляных насосов на некоторых самолетах с газотурбинными двигателями. В этих случаях от насосов требуется давление всего лишь в несколько атмосфер.
