- •Основные условные обозначения сокращения и индексы Основные условные обозначения
- •Основные сокращения
- •Индексы
- •Введение
- •1. Физиологические основы высотных полетов
- •1.1. Основные свойства земной атмосферы
- •1.2. Основы физиологии дыхания человека
- •1.3. Влияние пониженного давления на организм человека
- •1.4. Воздействие динамических факторов на организм человека
- •2. Бортовое кислородное оборудование
- •2.1. Назначение и требования, предъявляемые к кислородному оборудованию самолетов
- •2.2. Источники кислорода
- •2.3. Классификация кислородных систем и приборов
- •2.4. Кислородные приборы с непрерывной подачей кислорода
- •2.5. Кислородные приборы с периодической подачей кислорода
- •2.6. Кислородные маски
- •2.7. Личное снаряжение летчика
- •2.8. Запас кислорода на борту самолета
- •3. ГермокабиНы самолетов
- •3.1. Схемы герметических кабин
- •3.2. Требования, предъявляемые к атмосфере кабины самолета
- •3.3. Характеристики герметичности кабины
- •3.4. Элементы конструкции герметических кабин
- •3.5. Проверка герметичности кабин
- •3.6. Способы регулирования давления воздуха в гк
- •3.7. Источники наддува гк
- •3.8. Программы изменения давления воздуха в гк самолетов
- •3.9. Агрегаты оборудования герметической кабины
- •3.10. Сетевые регуляторы давления
- •3.11. Защитные устройства гермокабины (гк)
- •4. Системы кондиционирования воздуха на самолетах
- •4.1. Назначение систем кондиционирования воздуха
- •4.2. Скв на легком скоростном самолете
- •4.3. Тепловой режим кабин и отсеков ла
- •4.4. Теплоизоляция стенок кабин
- •4.5. Способы обогрева кабин
- •4.6. Основные элементы авиационных скв, их устройство и принцип действия
- •4.6.1. Теплообменные аппараты
- •4.6.2. Осушение воздуха в системах кондиционирования
- •4.6.3. Увлажнители воздуха в системе кондиционирования
- •4.7. Регулирование температуры воздуха в кабине
- •5. Гидравлические системы самолетов
- •5.1. Общие положения и назначение гидравлических систем самолетов
- •5.2. Роторные насосы
- •5.2.1. Пластинчатые насосы
- •5.2.2. Шестеренные насосы
- •5.2.3. Аксиально - роторные насосы
- •5.3. Гидравлические аккумуляторы
- •5.4. Силовые приводы
- •5.5. Гидравлические следящие устройства
- •5.6. Агрегаты регулирования потока рабочего тела по расходу и давлению
- •5.7. Методы разгрузки насосов
- •6. Противопожарное оборудование
- •6.1. Особенности возникновения пожара
- •6.2. Меры пожарной безопасности
- •6.4. Способы пожаротушения и возможности их применения в салонах летательных аппаратов
- •6.5. Системы защиты ла от взрыва
- •7. Противообледенительное оборудование
- •7.1. Основные факторы обледенения
- •7.2. Виды и формы льдообразований
- •7.3. Влияние обледенения на летные характеристики и безопасность полетов ла
- •7.4. Сигнализаторы обледенения
- •7.5. Способы и системы защиты ла от обледенения
- •7.5.1. Механические противообледенительные системы
- •7.5.2. Жидкостная противообледенительная система.
- •7.5.3. Тепловые пос
- •8. Список литературы
- •Оглавление
3. ГермокабиНы самолетов
3.1. Схемы герметических кабин
Полеты современных самолетов осуществляются на высотах, где атмосферное давление не может обеспечить приемлемые условия для здоровья и работоспособности человека. С целью ограждения человека и ряда технических систем и устройств от неблагоприятных условий окружающей среды на самолетах создаются герметические отсеки-гермокабины (ГК), способные обеспечивать повышенные давления. Необходимые условия в ГК обеспечиваются системой кондиционирования воздуха (СКВ).
На самолетах используются два типа герметических кабин: атмосферные (или вентиляционные) и автономные (или регенерационные).
Тип и схема размещение ГК (см. рис. 3.1) определяются типом и назначением летательного аппарата.
Для самолетов, имеющих высоту полета до 25 ... 30 км, наибольшее распространение получили кабины атмосферного типа (неавтономные), так как вентилируются воздухом окружающей среды (рис. 3.2, в).
В кабинах атмосферного типа наддув осуществляется атмосферным воздухом. Они более просты по конструкции, в них не требуется высокая степень герметизации. Подаваемый в кабину воздух используется одновременно и для вентиляции, и поддержания требуемой температуры.
Главным недостатком атмосферных кабин является их сравнительно небольшая высотность, ограничиваемая разреженностью воздуха на больших высотах и конструктивными возможностями нагнетающих устройств.
|
Рис. 3.1. Схемы расположения фюзеляжной герметической кабины на различных самолетах Рис. 3.2. Схемы вентиляции и наддува герметических кабин: а) автономные с регенерацией; б) автономные со сквозной вентиляцией; в) атмосферные. |
Такие же кабины применяются и на некоторых специальных самолетах (например, самолетах сельскохозяйственной авиации для работы с ядохимикатами).
Необходимое давление и состав воздуха в автономных кабинах поддерживаются с помощью регенерационных устройств и запаса воздуха или кислорода, хранящегося в бортовых баллонах или газификаторах. Продукты дыхания удаляются с помощью специальных поглотителей или путем пропускания воздуха через регенерационные системы.
Автономные кабины более сложны в эксплуатации, чем атмосферные, и требуют зарядки сжатым воздухом или кислородом, смены поглотительных патронов и т.д. При необходимости большего потребления газа могут использоваться газификаторы с жидким кислородом. Кроме того, такие кабины должны иметь системы регулирования температуры, влажности. Особенно высокие требования предъявляются к герметизации таких кабин, чтобы уменьшить утечку воздуха. Однако в условиях высотных полетов целесообразно применять только автономные кабины.
3.2. Требования, предъявляемые к атмосфере кабины самолета
Основным назначением самолетных СКВ является создание условий, необходимых для обеспечения нормальной жизнедеятельности и работоспособности пассажиров и экипажа в полете на различных высотах и в любых климатических условиях. Поэтому атмосфера в герметических кабинах самолетов должна соответствовать физиолого-гигиеническим требованиям.
1. Давление воздуха в кабинах самолетов при изменении высоты полета должно изменяться по определенному, заранее заданному для данного типа самолета, закону.
2. Скорость изменения давления воздуха в кабинах пассажирских самолетов по абсолютной величине должна быть не более 24 Па/с на всех допускаемых режимах эксплуатации самолета.
Допускаемая для человека скорость понижения давления примерно в два раза выше скорости его повышения. Для тренированного летного состава скорость перехода с нормального давления на пониженное не должна превышать 2,66 кПа/с (20 мм рт. ст./с), а скорость повышения давления – 1,33 кПа/с (10 мм рт. ст./с). При аварийной разгерметизации кабины для всех самолетов допускается от 2,66 до 5,35 кПа/с (от 20 до 40 мм рт. ст./с).
3. Температура воздуха в кабинах пассажирских самолетов должна составлять 20 ± 5°С. Неравномерность распределения температуры воздуха не должна превышать 3°С по длине и 2°С по высоте и ширине кабины. Температура ограждений не должна отличаться от температуры воздуха более чем на 5оС. В жаркое время года температура воздуха в гермокабине в момент посадки пассажиров должна быть на 8...10°С ниже температуры наружного воздуха, но не менее 20°С.
4. Относительная влажность воздуха в кабине пассажирского самолета в установившемся полете на крейсерской высоте должна быть в пределах 40...60%, (при допустимой – 25...60%). Верхний предел относительной влажности является оптимальным, а нижний – допустим лишь кратковременно.
5. Скорость движения воздуха в зоне головы человека в кабинах пассажирских самолетов не должна превышать 0,4 м/с, а в кабинах других самолетов – 1,5 м/с.
6. Общая интенсивность шума в кабине пассажирского самолета во время нормального полета не должна превышать 90 дБ, а при продолжительных полетах – 80 дБ. При пользовании шлемофонами допустимый уровень шума до (110 ... 115) дБ.
7. Подаваемый в кабины воздух не должен содержать пыли, плохо пахнущих веществ и вредных примесей.
