Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_Bzhd.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
139.75 Кб
Скачать

30. Огнетушащие вещества. Способы тушения пожаров.

Под огнестойкостью понимают способность строительных конструкций сопротивляться возникновению высокой температуры в условиях пожара и выполнять при этом свои обычные эксплуатационные функции т.е способность сохранять в условиях пожара несущие или ограждающие функции и сопротивляться распространению пожара.

Огнестойкость строительных конструкций характеризуется их пределом огнестойкости, под которым понимают время в минутах, по истечении которого они теряют несущую или ограждающую способность, т. е. не могут выполнять свои обычные эксплуатационные функции.

Предел огнестойкости – время (в минутах) наступления одного или последовательно нескольких нормируемых для данной конструкции признаков предельных состояний:

потеря несущей способности – разрушение конструкции или возникновение предельных деформаций, означает обрушение конструкции. обозначается индексом R.

потеря ограждающих функций – потеря целостности (появление сквозных трещин или отверстий) – проникновение продуктов сгорания за изолирующую преграду, обозначается индексом Е.

потеря теплоизолирующей способности – повышение температуры на не обогреваемой поверхности конструкции в среднем более чем на 140оили в любой точке поверхности более чем на 180о и обозначается индексом J .

Потеря ограждающей способности - прогрев конструкции при пожаре до температур, превышение которых может вызвать самовоспламенение веществ, находящихся в смежных помещениях, или образование в конструкции сквозных трещин или отверстий, через которые могут проникать продукты горения в соседние помещения.

Требуемая степень огнестойкости производственных зданий промышленных предприятий зависит от пожарной опасности размещаемых в них производств, площади этажа между противопожарными стенами и этажности здания. Требуемая степень огнестойкости должна соответствовать фактической степени огнестойкости, которая определяется по таблицам СНиП, содержащим сведения о пределах огнестойкости строительных конструкций и пределах распространения по ним огня.

Например, основные части зданий I и II степени огнестойкости являются несгораемыми и различаются только пределами огнестойкости строительных конструкций. В зданиях I степени распространение огня по основным строительным конструкциям не допускается совсем, а в зданиях II степени максимальный предел распространения огня, составляющий 40 см, допускается только для внутренних несущих стен (перегородок). Основные части зданий V степени являются сгораемыми. Пределы огнестойкости и распространения огня для них не нормируются.

  1. Огнетушащие вещества. Способы тушения пожаров.

К огнетушащим веществам относят воду, пены, инертные газы, галогеноуглеводородные, порошковые и комбинированные составы.

Вода – наиболее распространенное и дешевое средство. Она обладает высокой теплоемкостью (теплота парообразования 2258 Дж/г), повышенной термической стойкостью. При испарении 1 л воды образуется 1700 л пара. Воду применяют для тушения твердых горючих материалов, создания водяных завес и охлаждения объектов, расположенных вблизи очага горения.

Водой, из-за ее электропроводности, нельзя тушить электрооборудование. Ее не используют для тушения легких нефтепродуктов, т.к. они всплывают и продолжают гореть.

Воду подают в очаг горения в виде сплошных и распыленных струй. Сплошной струей сбивают пламя. Ее используют, когда к зоне горения трудно добраться и для охлаждения соседних с горящим объектом металлоконструкций.

Тушение распыленной струей более эффективно, вследствие лучшей ее испаряемости.

Для тушения ГЖ (ДТ, керосина, масел и др.) применяют распыленную воду в виде капельных струй, с их размером от 0,3 до 0,8 мм. Наилучший эффект для тушения ЛВЖ достигается мелкораспыленными и туманообразными водяными струями.

При введении в воду от 0,2 до 2,0% поверхностно-активных веществ (смачивателей) расход воды снижается в 2 – 2,5 раза.

При добавлении к воде 5 – 10% галогенированных углеводородов (бромэтила, тетрафтордибромэтана и др.) эффект тушения увеличивается за счет их ингибирующего действия.

Пена (химическая и воздушно-механическая) используется для тушения твердых веществ и ЛВЖ.

Пена. Огнетушащие пены бывают химические и воздушно-механические.

Химическая пена образуется в результате реакции нейтрализации между щелочью и кислотой в присутствии пенообразователя. Ее состав: 80% СО2, 19,7% Н2О о 0,3% пенообразователя.

Воздушно-механическая пена получается при механическом смешивании воды, пенообразователя и воздуха. Огнегасящие пены представляют собой структуру, состоящую из множества пузырьков газа или воздуха, разделенных тонкими пленками жидкости. Основным огнетушащим свойством пены является ее способность прекратить поступление в зону горения паров и газов, выделяющихся при горении вещества. Имеет зна­чение и охлаждающее действие пены. Пены широко применя­ют для тушения нефтепродуктов и других легковоспламеняю­щихся и горючих жидкостей.

Огнетушащие свойства пены определяются ее кратностью. Кратность пены это отношение объема пены к объему раствора, из которого она образована. Пены бывают низкократные – с кратностью от 8 до 40, средней кратности – от 40 до 120 и высокократные – свыше 120. Состав пены низкой кратности: 90% воздуха, 9,7% Н2О и 0,2–0,4% пенообразователя.

Для тушения пожаров ГЖ и ЛВЖ применяют воздушно-механическую пену средней кратности. Высокократную пену используют в подвалах и других замкнутых объемах, а также для тушения разлитых в небольших количествах жидкостей.

Стойкость пены характеризуется ее сопротивляемостью процессу разрушения, высокократные пены менее стойки.

Водяной пар применяют для тушения пожаров в помещениях небольшого объема и создания паровых завес на открытых технологических площадках. Огнетушащая концентрация пара составляет 35% (об).

Двуокись углерода (углекислота) и инертные газы. В очаг по­жара углекислоту можно подавать в твердом состоянии (угле­кислый снег), в виде мельчайших кристаллических частичек (аэрозоль) и газообразном виде (углекислый газ). Диоксид углерода применяют для тушения ЛВЖ, электрооборудования, на аккумуляторных станциях. Для подачи СО2 применяют огнетушители и стационарные установки. Тушение пожара основано на разбавлении концентрации кислорода в зоне горения.

Тушение уг­лекислотой происходит за счет снижения температуры и созда­ния инертной атмосферы в зоне горения. В качестве огнетушащих средств используют некоторые инертные газы – азот, аргон

Инертные разбавители – водяной пар, диоксид углерода, азот, аргон, дымовые газы, летучие ингибиторы (галогеносодержащие вещества).

Галоидированные углеводороды и составы. Для объемного ту­шения наряду с углекислотой и инертными газами применяют галоидированные углеводороды, к числу которых относят бро­мистый этил, бромистый метилен и дибромтетрафторэтан. Широкое применение находят составы, представляющие раз­личные комбинации галоидалкилов, а также их смеси с углекис­лотой. Тушение происходит в основном за счет химического взаимодействия в пламени, так как галоиды являются ингиби­торами.

Порошковые составы. Сухие порошковые составы применя­ют для быстрого тушения горючих газов, легковоспламеняющихся и горючих жидкостей, электроустановок, в том числе и под напряжением, щелочных металлов. Слой порошка на поверхности горения препятствует испарению и образованию горючей смеси.

В отдельных случаях можно тушить загорания, изолируя го­рящие вещества от кислорода воздуха плотными покрывалами (асбестовыми и шерстяными одеялами), брезентовыми тканя­ми, кошмами, войлоком. Быстрое и эффективное тушение по­жара может быть достигнуто при правильном выборе средств тушения и своевременной подаче их в нужном количестве в очаг горения. Порошковые составы сбивают и ингибируют пламя. Их используют для тушения электрооборудования, пирофорных соединений. Наиболее распространены порошковые составы на основе бикарбоната и карбоната натрия и калия, аммонийных солей фосфорной кислоты, силикагеля.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]