- •1.Физико-механические свойства горных пород.
- •2.Регулирование свойств глинистых растворов.
- •3.Винтовые забойные двигатели.
- •4.Основные причины и разновидности флюидопроявлений. Классификация тяжести осложнений на категории: проявление, выброс, фонтан, грифон.
- •5.Оказание первой помощи при поражении электрическим током.
- •Билет №2
- •1.Механические свойства горных пород: прочность, твердость, упругость, пластичность абразивность, буримость.
- •2.Буровые растворы на углеводородной основе.
- •3.Талевая система буровой установки. Конструктивные особенности, основные параметры и краткая характеристика элементов талевой системы.
- •4.Основные причины и пути поступления пластового флюида в скважину.
- •5. Оказание первой помощи при тепловом ожоге.
- •Билет № 3
- •1.Способы механического разрушения горных пород на забое скважины.
- •2.Плотность промывочной жидкости и способы ее регулирования.
- •3.Талевые канаты: конструкция, классификация и основные характеристики, правила выбраковки.
- •4.Причины поступления пластового флюида в скважину в процессе бурения.
- •Оказание первой помощи при химическом ожоге.
- •Билет № 4
- •1.Содержание подготовительных работ к бурению скважин.
- •2.Требования к дегазации промывочных жидкостей и способы ее осуществления.
- •3.Силовые агрегаты буровых установок.
- •4.Причины поступления пластового флюида в скважину при креплении скважин.
- •5. Оказание первой помощи при тепловом ударе.
- •Билет №5
- •1.Конструкция скважины. Требования к конструкции и крепи скважины.
- •2.Гидравлическая программа промывки скважины.
- •3.Системы блокировки, применяемые на буровом оборудовании и их краткая характеристика.
- •4.Признаки и раннее обнаружение газонефтеводопроявления.
- •5. Оказание первой помощи при пищевом отравлении.
- •Билет №6
- •1.Классификация породоразрушающего инструмента.
- •2.Особенности технологии бурения при равновесии давлений в системе «пласт-скважина».
- •3. Буровая лебедка. Эксплуатация и техническое обслуживание буровых лебедок.
- •4. Причины поступления пластового флюида в скважину при креплении скважин.
- •5. Оказание первой помощи при переломе ребер.
- •Билет №7
- •1.Станции и пульты контроля параметров процесса бурения.
- •2.Структура и содержание геолого-технического наряда.
- •Ротор. Индивидуальный привод ротора. Эксплуатация и техническое обслуживание ротора.
- •4.Предупреждение гнвп при спускоподъемных операциях.
- •Оказание первой помощи при переломе конечностей.
- •Билет №8
- •1.Структура и содержание инструктивно-технологической карты.
- •2.Долота шарошечные. Износ долот.
- •Рациональная отработка долот. Устройство и назначение вспомогательной лебедки.
- •4.Предупреждение гнвп при креплении скважины.
- •5. Оказание первой помощи при переломе позвоночника.
- •Билет № 9
- •2.Водоотдача промывочной жидкости. Способы ее регулирования.
- •3.Дизельный привод буровых установок. Рабочая характеристика привода.
- •4.Предупреждение гнвп при опробовании (испытании) скважины и вызове притока.
- •5. Оказание первой помощи при кровотечении.
- •Билет №10
- •Билет №11
- •Билет №12
- •Билет №13
- •Билет №14
- •Билет №15
- •Билет №16
- •Билет №17
- •Билет №18
- •Билет №19
- •Билет №20
- •Билет №21
- •1.Технология установки цементных мостов.
- •2.Последовательность выполнения работ по оснастке талевой системы буровой установки.
- •3.Средства малой механизации на буровой.
- •4.Первоочередные действия членов буровой вахты при возникновении газонефтеводопроявления в процессе спускоподъемных операций.
- •5. Оказание первой помощи при обморожении.
- •Билет №22
- •1.Показатели работы долота.
- •2.Поглощение промывочной жидкости. Причины, профилактика и способы ликвидации.
- •3.Назначение и конструкция элементов бурильной колонны при бурении горизонтальных, наклонных и вертикальных участков ствола скважины.
- •4.Первоочередные действия членов буровой вахты при возникновении газонефтеводопроявления при полностью извлеченном из скважины бурильном инструменте.
- •5. Оказание первой помощи при поражении электротоком.
- •Билет №23
- •Билет №24
- •1.Подготовительные работы к бурению скважин.
- •2.Инструменты и механизмы для спускоподъемных операций.
- •3.Способы вторичного вскрытия продуктивных пластов.
- •5. Оказание первой помощи при пищевом отравлении.
- •Билет №25
- •1.Аварии и осложнения в процессе бурения. Классификация и причины возникновения.
- •2.Способы испытания продуктивных пластов в процессе бурения.
- •3.Средства малой механизации в бурении.
- •4.Планы ликвидации возможных аварий в процессе строительства скважины.
- •5. Оказание первой помощи при химическом ожоге.
2.Инструменты и механизмы для спускоподъемных операций.
3.Способы вторичного вскрытия продуктивных пластов.
В настоящее время освоены и применяют несколько методов перфорации скважин:
Пулевая
Торпедная
Кумулятивная
Гидропескоструйная
1) Пулевая перфорация
Пулевая перфорация скважин заключается в спуске в скважину на кабель-канате специальных устройств - перфораторов, в корпус которых встроены пороховые заряды с пулями. Получая электрический импульс с поверхности, заряды взрываются, сообщая пулям высокую скорость и большую пробивную силу. Она вызывает разрушение металла колонны и цементного кольца. Количество отверстий в колонне и их расположение по толщине пласта заранее рассчитывается, поэтому иногда спускают гирлянду перфораторов.
Длина образующихся перфорационных каналов составляет 65 - 145 мм (в зависимости от прочности породы и типа перфоратора). Диаметр канала 12 мм.
2) Торпедная перфорация
Торпедная перфорация по принципу осуществления аналогична пулевой, только увеличен вес заряда и в перфораторе применены горизонтальные стволы.
Торпедная перфорация осуществляется аппаратами, спускаемыми на кабеле и стреляющими разрывными снарядами диаметром 22 мм. Внутренний заряд ВВ одного снаряда равен 5 г. Аппарат состоит из секций, в каждой из которых имеется по два горизонтальных ствола. Снаряд снабжен детонатором накольного типа. При остановке снаряда происходит взрыв внутреннего заряда и растрескивание окружающей горной породы. Масса ВВ одной камеры - 27 г. Глубина каналов по результатам испытаний составляет 100 - 160 мм, диаметр канала - 22 мм. На 1 м длины фильтра обычно делается не более четырех отверстий, так как при торпедной перфорации часты случаи разрушения обсадных колонн.
3) Кумулятивная перфорация
Кумулятивная перфорация - образование отверстий за счет направленного движения струи раскаленных вырывающихся из перфоратора зарядов со скоростью 6...8 км/с под давлением 20…30 ГПа. При этом образуется канал глубиной до 350 мм и диаметром 8...14 мм. Максимальная толщина пласта, вскрываемая кумулятивным перфоратором за спуск до 30 м, торпедным - до 1 м, пулевым до 2,5 м. Количество порохового заряда - до 50 г.
Размеры каналов зависят от прочности породы и типа перфоратора.
Все кумулятивные перфораторы имеют горизонтально расположенные заряды и разделяются на корпусные и бескорпусные. Корпусные перфораторы после их перезаряда используются многократно. Бескорпусные - одноразового действия. Однако разработаны и корпусные перфораторы одноразового действия, в которых легкий корпус из обычной стали используется только лишь для герметизации зарядов при погружении их в скважину.
Максимальная толщина вскрываемого интервала кумулятнвным перфоратором достигает 30 м, торпедным - 1 м, пулевым - до 2,5 м. Это является одной из причин широкого распространения кумулятивных перфораторов.
Рассмотрим устройство корпусного кумулятивного перфоратора ПК-105ДУ (рис. 4.7), нашедшего широкое распространение. Электрический импульс подается на взрывной патрон 1, находящийся в нижней части перфоратора. При взрыве детонация передается вверх от одного заряда к другому по детонирующему шнуру 2, обвивающему последовательно все заряды.
Корпусные перфораторы позволяют простреливать интервал до 3,5 м за один спуск, корпусные одноразового действия - до 10 м и бескорпусные или так называемые ленточные - до 30 м.
Ленточные перфораторы (рис. 4.8) намного легче корпусных, однако их применение ограничено величинами давления и температуры на забое скважины, так как их взрывной патрон и детонирующий шнур находятся в непосредственном контакте со скважинной жидкостью. В ленточном перфораторе заряды смонтированы в стеклянных (или из другого материала'), герметичных чашках, которые размещены в отверстиях длинной стальной ленты с грузом на конце. Вся гирлянда спускается на кабеле. Обычно при залпе лента полностью не разрушается, но для повторного использования не применяется. Головка, груз, лента после отстрела извлекаются на поверхность вместе с кабелем. К недостаткам бескорпусных перфораторов надо отнести невозможность контролирования числа отказов, тогда как в корпусных перфораторах такой контроль легко осуществим при осмотре извлеченного из скважины корпуса.
4) Гидропескоструйная перфорация
При использовании гидропескоструйной перфорации происходит образование отверстий в колонне за счет абразивного воздействия песчано-жидкостной смесью, истекающей со скоростью до 300 м/с из калиброванных сопел под давлением 15...30 МПа.
При гидропескоструйной перфорации разрушение преграды происходит в результате использования абразивного и гидромониторного эффектов высокоскоростных песчано-жидкостных струй, вылетающих из насадок специального аппарата - пескоструйного перфоратора, прикрепленного к нижнему концу насосно-компрессорных труб. Песчано-жидкостная смесь закачивается в НКТ насосными агрегатами высокого давления, смонтированными на шасси тяжелых автомашин, поднимается из скважины на поверхность по кольцевому пространству.
При гидропескоструйной перфорации (ГПП) создание отверстий в колонне, цементном камне и канала в породе достигается приданием песчано-жидкостной струе очень большой скорости, достигающей нескольких сотен метров в секунду. Перепад давления при этом составляет 15 - 30 МПа. В породе вымывается каверна грушеобразной формы, обращенной узким конусом к перфорационному отверстию в колонне. Размеры каверны зависят от прочности горных пород, продолжительности воздействия и мощности песчано-жидкостной струи. При стендовых испытаниях были получены каналы до 0,5 м.
4.Первоочередные действия членов буровой вахты при возникновении газонефтеводопроявления прикреплении скважины.
