- •Задания для контрольных работ
- •10. Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •Вариант №2
- •10.Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №3
- •9. Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •10. Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №4
- •Вероятность поражения мишени при одном выстреле равна 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена ровно 75 раз.
- •9. Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •10.Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №5
- •9. Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •10.Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №6
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №7
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №8
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №9
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •10. Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №10
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №11
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №12
- •7. Игральный кубик брошен один раз. Составить закон распределения для случайной величины х – числа выпавших очков. Найти , , . Построить график .
- •9. Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №13
- •Вероятность поражения мишени при одном выстреле равна 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена ровно 75 раз.
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №14
- •Бросают два игральных кубика. Найти вероятность того, что произведение выпавших очков четное.
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №15
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •10. Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
X Y |
5 |
10 |
15 |
20 |
25 |
30 |
15 |
|
6 |
4 |
2 |
|
2 |
25 |
4 |
2 |
8 |
1 |
5 |
|
35 |
|
|
|
10 |
7 |
1 |
45 |
5 |
3 |
8 |
|
6 |
7 |
55 |
9 |
5 |
|
4 |
|
1 |
Вариант №12
В группе из 20 студентов 4 не сдали сессию. По списку отобрали 16 студентов. Найти вероятность того, что среди отобранных студентов нет должников.
В ящике лежат одинаковые по форме пуговицы: 6 черных и 5 белых. Работнице требуется пришить к очередному пальто 3 черные пуговицы. Определить вероятность того, что среди наугад взятых 5 пуговиц имеется нужное количество черных пуговиц.
В пирамиде установлены 5 винтовок, из которых 3 снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок произведет один выстрел из наудачу взятой винтовки.
Вероятность появления события в одном испытании равна 0,7. Найти вероятность того, что среди пяти испытаний удачных будет не более двух.
Вероятность наступления события в одном опыте равна 0,6. Вычислить вероятность того, при 6000 испытаниях событие произойдет не менее 340 и не более 380 раз.
На станциях отправления поездов находится 1000 автоматов для продажи билетов. Вероятность выхода из строя одного автомата в течение часа равна 0,0004. Какова вероятность того, что в течение часа из строя выйдут три автомата?
7. Игральный кубик брошен один раз. Составить закон распределения для случайной величины х – числа выпавших очков. Найти , , . Построить график .
8. В партии 7 деталей 3 бракованные. Контролер наудачу достает 4 детали. Составить закон распределения для случайной величины Х – числа годных деталей в выборке. Найти , , . Построить график .
9. Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
X Y |
3 |
5 |
6 |
1 |
0,12 |
0,24 |
0,22 |
3 |
0,20 |
0,15 |
0,07 |
Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
11. Дано распределение случайной величины Х, полученной по n наблюдениям. Необходимо: 1) построить гистограмму; 2) найти: а) среднюю арифметическую; б) медиану; в) моду; г) среднее линейное отклонение д) выборочную дисперсию; е) среднее квадратическое отклонение; ж) коэффициент вариации; з) начальные и центральные моменты 1 и 2 порядков; и) коэффициент асимметрии; к) эксцесс. X – месячный доход жителя региона (в тыс.руб), n – число жителей.
xi |
менее 5 |
5-10 |
10-15 |
15-20 |
20-25 |
свыше 25 |
ni |
85 |
102 |
256 |
202 |
33 |
22 |
