Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Задания для контрольных работ.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
494.59 Кб
Скачать

12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.

X

Y

5

10

15

20

25

30

15

6

4

2

2

25

4

2

8

1

5

35

10

7

1

45

5

3

8

6

7

55

9

5

4

1

Вариант №12

  1. В группе из 20 студентов 4 не сдали сессию. По списку отобрали 16 студентов. Найти вероятность того, что среди отобранных студентов нет должников.

  2. В ящике лежат одинаковые по форме пуговицы: 6 черных и 5 белых. Работнице требуется пришить к очередному пальто 3 черные пуговицы. Определить вероятность того, что среди наугад взятых 5 пуговиц имеется нужное количество черных пуговиц.

  3. В пирамиде установлены 5 винтовок, из которых 3 снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок произведет один выстрел из наудачу взятой винтовки.

  4. Вероятность появления события в одном испытании равна 0,7. Найти вероятность того, что среди пяти испытаний удачных будет не более двух.

  5. Вероятность наступления события в одном опыте равна 0,6. Вычислить вероятность того, при 6000 испытаниях событие произойдет не менее 340 и не более 380 раз.

  6. На станциях отправления поездов находится 1000 автоматов для продажи билетов. Вероятность выхода из строя одного автомата в течение часа равна 0,0004. Какова вероятность того, что в течение часа из строя выйдут три автомата?

7. Игральный кубик брошен один раз. Составить закон распределения для случайной величины х – числа выпавших очков. Найти , , . Построить график .

8. В партии 7 деталей 3 бракованные. Контролер наудачу достает 4 детали. Составить закон распределения для случайной величины Х – числа годных деталей в выборке. Найти , , . Построить график .

9. Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.

X

Y

3

5

6

1

0,12

0,24

0,22

3

0,20

0,15

0,07

  1. Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.

11. Дано распределение случайной величины Х, полученной по n наблюдениям. Необходимо: 1) построить гистограмму; 2) найти: а) среднюю арифметическую; б) медиану; в) моду; г) среднее линейное отклонение д) выборочную дисперсию; е) среднее квадратическое отклонение; ж) коэффициент вариации; з) начальные и центральные моменты 1 и 2 порядков; и) коэффициент асимметрии; к) эксцесс. X – месячный доход жителя региона (в тыс.руб), n – число жителей.

xi

менее 5

5-10

10-15

15-20

20-25

свыше 25

ni

85

102

256

202

33

22