Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Задания для контрольных работ.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
494.59 Кб
Скачать

Вариант №11

  1. В группе 25 студентов из них 5 отличников. Какова вероятность того, что среди 7 наугад выбранных по списку студентов 3 отличника.

  2. Вероятность попадания в мишень для данного стрелка равна 0,7. Стрелок делает два выстрела по мишени. Найти вероятности следующих событий: а) стрелок попадет 2 раза; б) попадет один раз; в) попадет хотя бы один раз.

  3. Вся продукция проверяется двумя контролерами. Вероятность того, что изделие попадет на проверку к первому контролеру, равна, 0,55, а ко второму – 0,45. Вероятность пропустить нестандартные изделия для первого контролера равна 0,01, для второго – 0,02. Взятое наудачу изделие с маркой «стандарт» оказалось бракованным. Какова вероятность, что изделие проверялось вторым контролером?

  4. Электронная система состоит из 28 блоков, каждый из которых может отказать в течение года с вероятностью 0,05. Найти наиболее вероятное число отказов и его вероятность.

  5. Всхожесть семян некоторого растения равна 0,9. Какова вероятность того, что из 100 посеянных семян взойдет не менее 80.

  6. На станциях отправления поездов находится 1000 автоматов для продажи билетов. Вероятность выхода из строя одного автомата в течение часа равна 0,0004. Какова вероятность того, что в течение часа из строя выйдут два автомата?

  7. Два стрелка делают по одному выстрелу в мишень. Вероятность попадания в нее первым стрелком равна 0,9, вторым – 0,8. Составить закон распределения для случайной величины Х – числа попаданий в мишень. Найти , , . Построить график

  8. Вероятность появления события в каждом из независимых испытаний равна 0,9. Составить закон распределения для случайной величины Х - числа появления события при 5 испытаниях. Найти , , . Построить график .

  9. Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.

X

Y

1

3

4

3

0,13

0,24

0,12

5

0,18

0,06

0,27

  1. Случайная величина задана плотностью распределения . Найти коэффициент С, математическое ожидание и дисперсию. Найти .

  2. Дано распределение случайной величины Х, полученной по n наблюдениям. Необходимо: 1) построить полигон; 2) найти: а) среднюю арифметическую; б) медиану; в) моду; г) среднее линейное отклонение д) выборочную дисперсию; е) среднее квадратическое отклонение; ж) коэффициент вариации; з) начальные и центральные моменты 1 и 2 порядков; и) коэффициент асимметрии; к) эксцесс.

X – число сделок на фондовой бирже за квартал, n – число инвесторов.

xi

0

1

2

3

4

5

6

7

8

9

10

ni

45

36

21

17

8

7

5

4

3

3

1