- •Задания для контрольных работ
- •10. Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •Вариант №2
- •10.Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №3
- •9. Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •10. Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №4
- •Вероятность поражения мишени при одном выстреле равна 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена ровно 75 раз.
- •9. Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •10.Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №5
- •9. Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •10.Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №6
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №7
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №8
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №9
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •10. Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №10
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №11
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №12
- •7. Игральный кубик брошен один раз. Составить закон распределения для случайной величины х – числа выпавших очков. Найти , , . Построить график .
- •9. Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №13
- •Вероятность поражения мишени при одном выстреле равна 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена ровно 75 раз.
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №14
- •Бросают два игральных кубика. Найти вероятность того, что произведение выпавших очков четное.
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
- •Вариант №15
- •Найти линейную среднюю квадратическую регрессию случайной величины y на X и х на у на основе заданного закона распределения двумерной случайной величины.
- •10. Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
- •12. Найти выборочные уравнения линейной регрессии y на X и X на y на основании корреляционной таблицы.
Задания для контрольных работ
Вариант №1
Бросают два игральных кубика. Найти вероятность того, что произведение выпавших очков четное.
В ящике находятся 7 белых, 6 черных, 5 красных шаров. Наудачу извлекают 13 шаров. Найти вероятность того, что вынуты 5 белых, 4 черных и 4 красных.
Число грузовых машин, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу легковых как 3:2. Вероятность того, что будет заправляться грузовая машина, равна 0,1; для легковой машины эта вероятность равна 0,2. К бензоколонке подъехала для заправки машина. Найти вероятность того, что это грузовая машина.
В семье пять детей. Найти вероятность того, что среди этих детей: а) два мальчика, б) не более двух мальчиков, в) более двух мальчиков, г) не менее двух и не более трех мальчиков. Принять вероятность рождения мальчика равной 0,51.
При обследовании уставных фондов банков установлено, что пятая часть банков имеет уставной фонд свыше 100 млн.руб. Найти вероятность того, что среди 1800 банков имеют уставной фонд свыше 100 млн.руб. не менее 300 банков.
6. Вероятность получения бракованной детали равна 0,01. Какова вероятность того, что среди 400 деталей бракованных окажется: а) 3 детали; б) хотя бы одна.
7. Два
стрелка делают по одному выстрелу в
мишень. Вероятность попадания первого
равна 0,6, второго 0,8. Составить закон
распределения для случайной величины
Х - числа попаданий. Найти
,
,
.
Построить график
.
8. В ящике 3 белых шара и 4 черных. Шары достают до тех пор, пока не появится белый шар. Составить закон распределения для случайной величины Х – числа испытаний. Найти , , . Построить график .
9. Найти линейную среднюю квадратическую регрессию случайной величины Y на X и Х на У на основе заданного закона распределения двумерной случайной величины.
X Y |
1 |
3 |
4 |
2 |
0,16 |
0,10 |
0,28 |
3 |
0,14 |
0,20 |
0,12 |
10. Задана функция распределения случайной величины х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение.
11. Дано распределение случайной величины Х, полученной по n наблюдениям. Необходимо: 1) построить полигон; 2) найти: а) среднюю арифметическую; б) медиану; в) моду; г) среднее линейное отклонение д) выборочную дисперсию; е) среднее квадратическое отклонение; ж) коэффициент вариации; з) начальные и центральные моменты 1 и 2 порядков; и) коэффициент асимметрии; к) эксцесс.
X – число сделок на фондовой бирже за квартал, n – число инвесторов.
xi |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
ni |
146 |
97 |
73 |
34 |
23 |
10 |
6 |
3 |
4 |
2 |
2 |
12. Найти выборочные уравнения линейной регрессии Y на X и X на Y на основании корреляционной таблицы.
X Y |
10 |
15 |
20 |
25 |
30 |
35 |
15 |
6 |
4 |
|
|
|
|
25 |
|
6 |
8 |
|
|
|
35 |
|
|
|
21 |
2 |
5 |
45 |
|
|
|
4 |
12 |
6 |
55 |
|
|
|
|
1 |
5 |
