- •Федеральное агентство по образованию
- •Содержание
- •Введение
- •1. Цели и задачи дисциплины
- •2. Требования к уровню освоения содержания дисциплины
- •2.1. Инновационные технологии, используемые в учебном процессе
- •3. Объем дисциплины
- •Экономика и управление на предприятии (по отраслям)
- •3.2. Распределение часов по темам и видам учебной работы
- •4. Содержание курса Раздел 1. Дифференциальное исчисление Тема 1. Предел и непрерывность функции
- •Тема 2. Дифференциальное исчисление функций одной переменной
- •Тема 3. Дифференциальное исчисление функций нескольких переменных
- •Раздел 2. Интегральное исчисление дифференциальные уравнения. Ряды Тема 4. Интегралы
- •Тема 5. Дифференциальные уравнения
- •Тема 6. Ряды
- •Раздел 3. Линейная алгебра с элементами аналитической геометрии Тема 7. Векторная алгебра
- •Тема 8. Элементы аналитической геометрии
- •Тема 13. Случайные величины и их числовые характеристики
- •Раздел 6. Марковские цепи в экономике
- •Тема 2. Дифференциальное исчисление функций одной переменной
- •Тема 3. Дифференциальное исчисление функций нескольких переменных
- •Раздел II. Интегральное исчисление. Дифференциальные уравнения. Ряды
- •Тема 4. Интегралы
- •Тема 5. Дифференциальные уравнения
- •Раздел 3. Линейная алгебра с элементами аналитической геометрии
- •Тема 7. Векторная алгебра
- •Тема 8. Элементы аналитической геометрии
- •Тема 9. Матрицы и определители
- •Тема 10. Системы линейных уравнений (слу)
- •Раздел 4. Теория вероятностей
- •Тема 12. Основные понятия теории вероятностей. Случайные события
- •Тема 13. Случайные величины и их числовые характеристики
- •Тема 14. Основные распределения случайных величин
- •Тема 15. Функция случайной величины
- •Раздел 5. Линейное программирование
- •Тема 18. Задача линейного программирования (лп)
- •П.1.2. Графическое решение задачи лп
- •Тема 19. Симплексный метод линейного программирования Это практическое занятие можно провести в форме деловой игры и дискуссии.
- •Решите следующие задачи симплекс-методом:
- •Тема 3. Двойственность в линейном программировании
- •Тема 20. Транспортная задача Это занятие можно провести в форме деловой игры и дискуссии.
- •П.2.1. Замкнутая модель тз
- •Тема 22. Матричные игры Это занятие можно провести в форме деловой игры и дискуссии. П.3.1. Матричные игры с седловой точкой
- •П.3.3. Решение игры симплекс-методом
- •Раздел 6. Марковские цепи в экономике
- •Тема 23. Потоки событий
- •1.1. Простейший поток событий
- •1.2. Системы массового обслуживания с отказами
- •Тема 24. Уравнения Колмогорова
- •1.3. Системы массового обслуживания с ограниченной очередью.
- •Тема 25. Системы массового обслуживания
- •Раздел 7. Нелинейные задачи и оптимизация на графах
- •Тема 26. Задача динамического программирования
- •Тема 27. Основы теории графов
- •3.1. Основные понятия
- •Тема 28. Задача о коммивояжере
- •Тема 29. Задача об оптимальном потоке
- •Тема 30. Задача о назначениях
- •3.3. Задача о назначении
- •Тема 31. Задача сетевого планирования
- •3.4. Сетевой график
- •Раздел 8. Исследование функций и экономическое моделирование
- •7. Темы контрольных работ и методические указания по их выполнению
- •Вариант 1
- •2. Решите систему линейных уравнений
- •Вариант 2
- •2. Решите систему линейных уравнений
- •Вариант 3
- •2. Решите систему линейных уравнений
- •Вариант 4
- •Вариант 6
- •А) 150 мальчиков; б) от 150 до 200 мальчиков? Вариант 7
- •Вариант 8
- •6. Известно, что вероятность опоздания ежедневного поезда на станцию равна 0,2. Какова вероятность того, что в течение 200 дней поезд опоздает на станцию а) 50 раз; б) от 100 до 150 раз? Вариант 9
- •Методические рекомендации к выполнению контрольной работы
- •Элементы теории вероятности и математической статистики
- •7.2.3. Контрольные задания для студентов заочной формы обучения всех специальностей по прикладной математике (III семестр) представлены в методическом пособии [7]
- •7.2.4. Контрольные задания для студентов заочной формы обучения всех специальностей (направлений) Прикладная математика (IV семестр)
- •Методические указания к выполнению задач (к/р IV семестр)
- •Тема 1. Модели оптимального планирования
- •Тема 2. Системы и модели массового обслуживания
- •Модели смо с ожиданием для решения задач № 26-30
- •Тема 3. Игровые методы и модели в торговле
- •3. Критерий пессимизма – оптимизма Гурвица.
- •Тема 4. Методы и модели сетевого планирования и управления
- •8. Вопросы для подготовки к экзамену 1-ый семестр
- •3 Семестр
- •4 Семестр
- •9. Учебно-методическое обеспечение дисциплины
- •9.1. Литература основная
- •Дополнительная Разделы 1, 2 и 3
- •Раздел 4
- •9.2 Методическое обеспечение
- •9.3 Материально-техническое и информационное обеспечение дисциплины
- •Математика
Вариант 8
1. В декартовой прямоугольной системе координат даны вершины пирамиды A1, B1, C1, D1. Найдите:
а) длину ребра A1B1;
б)
косинус угла между векторами
;
в) уравнение ребра A1B1;
г) уравнение грани A1B1C1;
д) уравнение высоты, опущенной из вершины D1 на грань A1B1C1;
е)
координаты векторов
,![]()
и
докажите, что они образуют линейно
независимую систему;
ж)
координаты вектора
,
где M и N – середины ребер A1D1
и B1C1
соответственно;
з)
разложение вектора
по
базису![]()
,
если A1(1, -1, 1), B1(2, 1, -1), C1(-2, 0, 3), D1(2, -2, -4).
2. Решите систему линейных уравнений
а) методом Крамера;
б) методом Гаусса;
в) с помощью обратной матрицы.

3. В коробке 30 одинаковых юбилейных монет. Известно, что 5 из них имеют нестандартный процент содержания золота. Случайным образом выбирают три монеты. Вычислите вероятность того, что: а) все монеты имеют нестандартный процент содержания золота; б) только одна монета имеет нестандартный процент содержания золота.
4. Магазин получил две равные по количеству партии одноименного товара. Известно что 25% первой партии и 40% второй партии составляет товар первого сорта. Какова вероятность того, что наугад выбранная единица товара будет не первого сорта?
5. Задан закон распределения дискретной случайной величины X:
|
X |
-2 |
-1 |
0 |
1 |
2 |
3 |
4 |
|
p |
0,02 |
0,38 |
0,30 |
p |
0,08 |
0,04 |
0,02 |
Найти:
а) неизвестную вероятность p;
б) математическое ожидание M, дисперсию D и среднее квадратическое отклонение данной случайной величины;
в) функцию распределения F(x) и построить её график;
г)
закон распределения случайной величины
Y, если её значения заданы функциональной
зависимостью
.
6. Известно, что вероятность опоздания ежедневного поезда на станцию равна 0,2. Какова вероятность того, что в течение 200 дней поезд опоздает на станцию а) 50 раз; б) от 100 до 150 раз? Вариант 9
1. В декартовой прямоугольной системе координат даны вершины пирамиды A1, B1, C1, D1. Найдите:
а) длину ребра A1B1;
б)
косинус угла между векторами
;
в) уравнение ребра A1B1;
г) уравнение грани A1B1C1;
д) уравнение высоты, опущенной из вершины D1 на грань A1B1C1;
е)
координаты векторов
,![]()
и
докажите, что они образуют линейно
независимую систему;
ж)
координаты вектора
,
где M и N – середины ребер A1D1
и B1C1
соответственно;
з)
разложение вектора
по
базису![]()
,
если A1(0, 1, -1), B1(-3, 0, 1), C1(1, 2, 0), D1(1, -1, 2).
2. Решите систему линейных уравнений
а) методом Крамера;
б) методом Гаусса;
в) с помощью обратной матрицы.

3. На витрине 32 одинаковых булочки. Известно, что среди них четверть булочек с изюмом, остальные с корицей. Случайным образом отбирают три булочки. Вычислите вероятность того, что: а) все выбранные булочки с изюмом; б) только одна булочка с изюмом.
4. Укупорка банок производится двумя автоматами с одинаковой производительностью. Доля банок с дефектом укупорки для первого автомата составляет 1%, а для второго 0,5%. Какова вероятность того, что наугад взятая банка будет иметь дефект укупорки?
5. Задан закон распределения дискретной случайной величины X:
|
X |
-2 |
-1 |
0 |
1 |
2 |
3 |
4 |
|
p |
0,08 |
0,10 |
0,14 |
0,17 |
0,19 |
0,18 |
p |
Найти:
а) неизвестную вероятность p;
б) математическое ожидание M, дисперсию D и среднее квадратическое отклонение данной случайной величины;
в) функцию распределения F(x) и построить её график;
г)
закон распределения случайной величины
Y, если её значения заданы функциональной
зависимостью
![]()
6. Установлено, что третья часть покупателей при посещении модного магазина приобретает себе одежду. Какова вероятность того, что из 150 посетителей магазина: а) ровно 50 человек приобретут товар; б) от 100 до 120 человек приобретут товар?
