- •Федеральное государственное бюджетное образовательное учреждение
- •Кафедра прикладной математики
- •Предисловие
- •Задание 1
- •Справочный материал
- •Рекомендации к выполнению задания
- •Пример решения задачи
- •Дифференциальное исчисление функций Дифференцирование функций задание 2
- •Справочный материал к заданию
- •Рекомендации к выполнению задания
- •Пример решения задачи
- •Функции нескольких переменных задание 3
- •Рекомендации к выполнению задания
- •Пример решения задачи
- •Задание 4
- •Справочный материал к заданию
- •Основные методы интегрирования функций
- •Рекомендации к выполнению задания Интегрирование простейших рациональных дробей
- •Интегрирование рациональных дробей методом разложения на простейшие дроби
- •Интегрирование некоторых тригонометрических функций
- •Интегрирование некоторых иррациональных выражений. Некоторые тригонометрические подстановки
- •Определенный интеграл. Несобственный интеграл задание 5
- •Свойства определенного интеграла:
- •Интегрирование по частям в определенном интеграле
- •Несобственные интегралы
- •2) Пусть определена на и интегрируема на каждом конечном промежутке , (рис. 4).
- •Справочный материал к заданию
- •Рекомендации к выполнению задания
- •Пример решения задачи
- •Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами и специальной правой частью задание 7
- •Справочный материал
- •Рекомендации к выполнению задания
- •Пример решения задачи
- •Числовые ряды
- •Пример решения задачи
- •Степенные ряды
- •Примеры решения задачи
- •Задание 9
- •Справочный материал к заданию
- •Рекомендации к выполнению задания
- •Пример решения задачи
- •Вопросы к экзамену по математике
- •Раздел 1. Введение в анализ. Пределы и непрерывность
- •Раздел 2. Дифференциальное исчисление функции одной переменной.
- •Раздел 3. Дифференциальное исчисление функции двух переменных.
- •Раздел 4. Комплексные числа.
- •Раздел 5. Интегральное исчисление
- •Раздел 6. Дифференциальные уравнения.
- •Раздел 7. Ряды.
- •Библиографический список
- •Приложение1. Задание1. Задачи 1.1-1.20
- •Приложение 2. Задание 2. Задачи 2.1—2.20
- •Приложение 3. Задание 3 Задачи 3.1-3.20
- •Данные к заданию 3
- •Данные к заданию 4
- •Приложение 5. Задание 5 Задачи 5.1-5.20
- •Данные к заданию 5
- •Данные к заданию 6
- •Приложение7. Задание 7 Задачи 7.1-7.20
- •Данные к заданию 7
- •Приложение 8. Задание 8 Задачи 8.1-8.20
- •Задачи 9.1-9.20
- •Данные к заданию 7
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
СОЧИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Кафедра прикладной математики
МАТЕМАТИЧЕСКИЙ АНАЛИЗ
Методические указания и задания
к выполнению контрольной работы
для студентов первого курса
экономического факультета
(специальности 080101, 080102, 080103,
080104, 080105,)
заочной формы обучения
Сочи • РИЦ СГУ• 2012
УДК 546(075.8)
Рекомендовано к печати на заседании кафедры прикладной математики Факультета информационных технологий и математики
(протокол № 8 от 27.02.2012 г.)
Рецензент:
кандидат технических наук, заведующий кафедры информационных технологий Дрейзис Ю.И.
Составители:
кандидат технических наук, профессор И.Л. Макарова,
старший преподаватель Н.С.Абуева,
старший преподаватель С.Г.Темирова,
старший преподаватель А.М. Фетисова,
кандидат педагогических наук, доцент Т.Ю. Яковенко,
кандидат физико-математических наук, доцент Н.Ф. Якунина
Методические указания и задания к выполнению контрольной работы по математическому анализу для студентов первого курса экономического факультета (спец. 080101, 080102, 080103, 080104, 080105) заочной формы обучения: методические указания / И.Л.Макарова, Н.С.Абуева, С.Г.Темирова, А.М.Фетисова, Т.Ю.Яковенко, Н.Ф. Якунина. – Сочи: РИЦ СГУ, 2012. – 84 с.
Материал содержит контрольную работу по математическому анализу, справочный материал к заданиям и подробные методические рекомендации к их выполнению, примеры решения типовых задач, экзаменационную программу и список рекомендуемой литературы. Приведены двадцать вариантов заданий по контрольной работе (1-й и 2-й семестры учебного плана ЗФО). Указания предназначены для организации самостоятельной работы студентов-заочников.
Для студентов 1-го курса экономического факультета специальностей 080101, 080102, 080103, 080104, 080105, заочной формы обучения.
УДК 546(075.8)
© Сочинский государственный университет , 2012
© Макарова И.Л. и др., составление, 2012
© Оформление. РИЦ СГУ, 2012
Предисловие
В настоящей методической разработке содержатся базовые понятия, справочный теоретический материал, примеры решения задач по разделам математического анализа «Пределы», «Дифференциальное исчисление функций одной и нескольких переменных», «Интегральное исчисление функций одной переменной», «Обыкновенные дифференциальные уравнения» и «Ряды».
Детально разобранные примеры решения задач имеют цель помочь студентам глубже освоить теоретический материал и применять его при изучении смежных экономических дисциплин. Самостоятельное выполнение контрольной работы обеспечит успешную подготовку к экзаменационной сессии во втором семестре.
КОНТРОЛЬНАЯ РАБОТА ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ
Контрольная работа выполняется студентами заочной формы обучения в обязательном порядке. Номер варианта определяется как остаток от деления числа, составленного из последних двух цифр номера зачетной книжки и взятых в том же порядке, на число 20. Если деление выполняется без остатка, то номер варианта 20.
Студент должен оформить решение своего варианта в отдельной тетради. Задания должны быть представлены в том порядке, в котором они пронумерованы в данной работе. Условия заданий должны быть полностью записаны перед решением. Выполненная и надлежащим образом оформленная работа должна быть сдана лаборанту на кафедру прикладной математики для регистрации. Желательный срок сдачи - до 15 мая.
Зачтенные контрольные работы остаются на кафедре прикладной математики. Если работа не зачтена, то она через лаборанта возвращается студенту вместе с рецензией для доработки. Работу над ошибками следует выполнить в этой же тетради после указанных рецензентом замечаний. Правильно выполненные задания переписывать заново не надо.
Студенты, справившиеся с контрольной работой, допускаются к сдаче экзамена.
В случае затруднений при выполнении заданий студент может обратиться к ведущему преподавателю во время консультаций.
Консультации проводятся согласно расписанию.
Оглавление
Федеральное государственное бюджетное образовательное учреждение 1
Кафедра прикладной математики 1
5
ЗАДАНИЕ 1 5
ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ 15
ЗАДАНИЕ 3 15
ЗАДАНИЕ 4 21
ЗАДАНИЕ 5 29
ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 33
ЗАДАНИЕ 6. 34
В задачах 6.1-6.20 определить тип и решить дифференциальные уравнения первого порядка. При заданном начальном условии решить задачу Коши. 34
Данные к Заданию 6 представлены в Приложении 6. 34
ЗАДАНИЕ 7 38
ТЕОРИЯ РЯДОВ 44
ЗАДАНИЕ 8 44
В задачах 8.1-8.20 написать три первых члена степенного ряда, найти интервал сходимости ряда и исследовать его сходимость на концах этого интервала. 44
Данные к заданию 8 приведены в Приложении 8. 44
Справочный материал к заданию 44
ЗАДАНИЕ 9 53
ВОПРОСЫ К ЭКЗАМЕНУ ПО МАТЕМАТИКЕ 57
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 60
Приложение 2. Задание 2. 64
Приложение 3. Задание 3 68
69
Приложение 4. Задание 4. 69
Найти указанные неопределенные интегралы (табл.2), подобрав подходящий метод интегрирования, используя таблицу основных интегралов и свойства неопределенного интеграла. Результат проверить дифференцированием. 70
Приложение 5. Задание 5 72
Приложение 6. Задание 6 74
Определить тип и решить дифференциальные уравнения первого порядка. При заданном начальном условии решить задачу Коши. Данные к заданию 6 приведены в Таблице 4. 74
Приложение7. Задание 7 76
Приложение 8. Задание 8 77
Задачи 8.1-8.20 77
ПРЕДЕЛЫ
