Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
statistika.doc
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
4.65 Mб
Скачать

15. Аналитические и средние показатели рядов динамики. Определения среднегодовых темпов роста и прироста.

При изучении динамики явлений или процессов возникает про­блема описания интенсивности происходящих изменений. Анализ ин­тенсивности изменения во времени осуществляется с помощью пока­зателей, получаемых в результате сравнения уровней ряда динамики.

К таким показателям относятся: абсолютный прирост, темп роста, темп прироста, абсолютное значение одного процента прироста.

Анализ интенсивности изменения во времени осуществляется с помощью показателей, получаемых в результате сравнения уровней. К таким показателям относятся:абсолютный прирост, темп роста, темп прироста, абсолютное значение одного процента. Показатели анализа динамики могут вычисляться на постоянной и переменной базах сравнения. При этом принято называть сравниваемый уровень отчетным, а уровень, с которым производится сравнение, базисным. Для расчета показателей анализа динамики на постоянной базе, каждый уровень ряда сравнивается с одним и тем же базисным уровнем. В качестве базисного выбирается либо начальный уровень в ряду динамики, либо уровень, с которого начинается какой-то новый этап развития явления. Исчисляемые, при этом, показатели называются базисными. Для расчета показателей анализа динамики на переменной базе, каждый последующий уровень ряда сравнивается с предыдущим. Вычисленные таким образом показатели анализа динамики называютсяцепными.Важнейшим статистическим показателем анализа динамики является абсолютный прирост (сокращение), т.е. абсолютное изменение, характеризующее увеличение или уменьшение уровня ряда за определенный промежуток времени. Абсолютный прирост с переменной базой называют скоростью роста.

Абсолютный прирост:

  1. базисный

  1. цепной

Цепные и базисные абсолютные приросты связаны между собой: сумма последовательных цепных абсолютных приростов равна базисному, т.е. общему приросту за весь промежуток времени

Для оценки интенсивности, т.е. относительного изменения уровня динамического ряда за какой-либо период времени, исчисляют темпы роста (снижения). Интенсивность изменения уровня оценивается отношением отчетного уровня к базисному. Показатель интенсивности изменения уровня ряда, выраженный в долях единицы, называется коэффициентом роста, а в процентах – темпом роста. Эти показатели интенсивности отличаются только единицами измерения. Коэффициент роста (снижения)показывает, во сколько раз сравниваемый уровень больше уровня, с которым производится сравнение (если этот коэффициент больше единицы) или какую часть (долю) уровня, с которым производится сравнение, составляет сравниваемый уровень (если он меньше единицы). Темп роста всегда представляет собой положительное число.

Коэффициент роста:

  1. базисный:

  1. цепной:

Темп роста:

  1. базисный:

  1. цепной:

Таким образом,

 

Между цепными и базисными коэффициентами роста существует взаимосвязь (если базисные коэффициенты исчислены по отношению к начальному уровню ряда динамики): произведение последовательных цепных коэффициентов роста равно базисному коэффициенту роста за весь период:

а частное от деления последующего базисного темпа роста на предыдущий равно соответствующему цепному темпу роста.

Относительную оценку скорости измерения уровня ряда в единицу времени дают показатели темпа прироста (сокращения). Темп прироста (сокращения)показывает, на сколько процентов сравниваемый уровень больше или меньше уровня, принятого за базу сравнения и вычисляется как отношение абсолютного прироста к абсолютному уровню, принятому за базу сравнения. Темп прироста может быть положительным, отрицательным или равным нулю, выражается он в процентах или в долях единицы (коэффициенты прироста).

Темп прироста:

  1. базисный:

  1. цепной:

Темп прироста (сокращения) можно получить, если из темпа роста, выраженного в процентах, вычесть 100%:

Коэффициент прироста получается вычитанием единицы из коэффициента роста:

При анализе динамики развития следует также знать, какие абсолютные значения скрываются за темпами роста и прироста. Чтобы правильно оценить значение полученного темпа прироста, его рассматривают в сопоставлении с показателем абсолютного прироста. Результат выражают показателем, который называютабсолютным значением (содержанием) одного процента прироста и рассчитывают как отношение абсолютного прироста к темпу прироста за этот период времени, %:

 

 

С течением времени изменяются не только уровни явлений, но и показатели их динамики – абсолютные приросты и темпы развития, поэтому для обобщающей характеристики развития, для выявления и измерения типичных основных тенденций и закономерностей и решения других задач анализа используются средние показатели временного ряда – средние уровни, средние абсолютные приросты и средние темпы динамики.

К расчету средних уровней ряда динамики часто приходится прибегать уже при построении временного ряда – для обеспечения сопоставимости числителя и знаменателя при расчете средних и относительных величин. Пусть, например, нужно построить ряд динамики производства электроэнергии на душу населения в Российской Федерации. Для этого за каждый год необходимо количество произведенной электроэнергии в данном году (интервальный показатель) разделить на численность населения в том же году (момент-ный показатель, величина которого непрерывно меняется на протяжении года). Ясно, что численность населения на тот или иной момент времени в общем случае несопоставима с объемом производства за весь год в целом. Для обеспечения сопоставимости нужно и численность населения как-то приурочить ко всему году, а это можно сделать, лишь рассчитав среднюю численность населения за год.

Часто приходится прибегать к средним показателям динамики и потому, что уровни многих явлений сильно колеблются от периода к периоду, например от года к году, то повышаясь, то понижаясь. Особенно это относится ко многим показателям сельского хозяйства, где год на год не приходится, поэтому при анализе развития сельского хозяйства чаще оперируют не годовыми показателями, а более типичными и устойчивыми среднегодовыми показателями за несколько лет.

При вычислении средних показателей динамики необходимо иметь в виду, что к этим средним показателям полностью относятся общие положения теории средних величин. Это означает прежде всего, что динамическая средняя будет типичной, если она характеризует период с однородными, более или менее стабильными условиями развития явления. Выделение таких периодов – этапов развития – в определенном отношении аналогично группировке. Если же динамическая средняя величина исчислена за период, в течение которого условия развития явления существенно менялись, т. е. период, охватывающий разные этапы развития явления, то такой средней величиной нужно пользоваться с большой осторожностью, дополняя ее средними величинами за отдельные этапы.

 

Средние показатели динамики должны также удовлетворять логико-математическому требованию, согласно которому при замене средней величиной тех фактических величин, из которых получена средняя, не должна изменяться величина определяющего показателя, т. е. некоторого обобщающего показателя, связанного с осредняемым показателем. Метод расчета среднего уровня ряда динамики зависит прежде всего от характера показателя, лежащего в основе ряда, т. е. от вида временного ряда

,16.Интерполяция и экстраполяция динамического ряда. Сезонные колебания, статистические методы их измерения.

Более совершенным способом выявления основной тенденции динамики является аналитическое выравнивание (определение тренда). Этот способ состоит в нахождении такой прямой или кривой, ординаты точек которой были бы максимально близки к уровням исследуемого динамического ряда, т.е. нахождение уравнения тренда. Выравнивание по уравнению тренда прямой применяется в тех случаях, когда характер движения изучаемого явления ближе всего к прямолинейному.

Рассчитываемые при анализе рядов динамики аналитические и средние показатели, параметры уравнений тренда широко используются для интерполяции и экстраполяции динамических рядов.

Интерполяцией называется нахождение недостающих промежуточных уровней ряда динамики. При этом предполагается, что закономерность изменения уровней, выявленная в изучаемом периоде, характерна для каждого его временного отрезка.

Экстраполяцией называется определение неизвестных уровней динамического ряда, лежащих за его пределами. Этот метод заключается в том, что, продолжая найденные математические кривые, можно предсказать дальнейшее развитие явлений (или сделать вывод о развитии исследуемого явления в прошлом).

Необходимо иметь в виду, что экстраполяция в рядах динамики носит приближенный, условный характер.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]