- •Isbn 978-9965-876-43-1
- •Isbn 978-9965-876-43-1
- •Содержание
- •Введение
- •1 Неорганические вяжущие вещества
- •1.1 Цемент
- •1.1.1 История
- •1.1.2 Экономика
- •1.1.3 Определение клинкера, цемента и добавок, вводимых при помоле
- •1.1.4 Состав сырьевой муки
- •1.1.5 Портландцементный клинкер
- •1.1.5.1 Номенклатура фаз клинкера
- •1.1.5.2 Алит
- •1.1.5.3 Белит
- •1.1.5.4 Фазы алюмината
- •1.1.5.5 Фаза феррита
- •1.1.5.6 Другие фазы клинкера
- •1.1.5.7 Состав и место происхождения
- •1.1.6 Анализ сырьевой муки, клинкера и цемента
- •1.1.7 Производство цемента
- •1.1.7.1 Сырье и топливо
- •1.1.7.1.1 Сырьевые материалы
- •1.1.7.1.2 Отходы
- •1.1.7.1.3 Добыча, переработка сырья, помол сырьевой муки и гомогенизация
- •1.1.7.2 Процесс обжига цементного клинкера
- •1.1.7.2.1 Процессы обжига
- •1.1.7.2.2. Топливо
- •1.1.7.2.3. Помол цемента
- •1.1.7.2.4. Тонкость помола и гранулометрический (зерновой) состав цемента
- •1.1.7.3. Хранение, упаковка, отгрузка цемента потребителю
- •1.1.8. Компоненты стандартного цемента
- •1.1.8.1. Основные составляющие портландцементного клинкера (k)
- •1.1.8.2 Мелкие составляющие
- •1.1.8.3 Сульфат кальция
- •1.1.8.4 Добавки к цементам
- •1.1.9 Цемент в соответствии со стандартом
- •1.1.9.1. Физические и химические свойства цементов по европейскому стандарту
- •1.1.9.2 Цементы со специальными свойствами
- •1.1.9.3 Тампонажный цемент
- •1.1.10 Гидратация
- •1.1.10.1 Реакция силикатов (c3s, c2s)
- •1.1.10.2 Реакции гидратации алюмината (c3a)
- •1.1.10.3 Гидратация феррита (c4af)
- •1. Модель Тейлора
- •2. Модель Старка
- •1.1.10.4 Гидратация цементов
- •1.1.10.5 Реакции вторичных составляющих
- •1.1.10.6 Гидратация цемента содержащего гранулированный шлак
- •1.1.10.7 Реакции пуццолановых материалов
- •1.1.10.8 Замедление затвердевания
- •1.1.11 Структура цементного камня
- •1.2 Строительная известь
- •1.2.1 Историческое и экономическое положение
- •1.2.2 Месторождения сырья
- •1.2.3 Производство извести
- •1.2.3.1 Добыча и переработка известняка
- •1.2.3.2 Обжиг извести
- •1.2.3.2.1 Шахтная печь на коксовом (угольном) и газовом топливе
- •1.2.3.2.2 Вращающаяся трубчатая печь
- •1.2.3.2.3 Противоточная регенеративная печь (ggr-печь)
- •1.2.3.2.4 Шахтная кольцевая печь
- •1.2.3.3 Помол и отгрузка обожженной извести
- •1.2.3.4 Гашение извести
- •1.2.4 Применение известковых продуктов
- •1.2.5 Требования гост 9179–79 к строительной извести
- •1.3 Гипс
- •1.3.1 История и экономика
- •1.3.2 Физико-химические основы гипсовых вяжущих
- •1.3.2.1 Фазы в системе CaSo4 - h2o
- •1.3.2.2 Кристаллические структуры, двойные соли, смешанные кристаллы
- •1.3.3 Месторождения и сырьё
- •1.3.3.1 Природный гипс, природный ангидрит
- •1.3.3.2 Химический гипс
- •1.3.3.3 Уддг-гипс
- •1.3.4 Производство кальциево-сульфатных вяжущих
- •1.3.4.1 Технологические процессы при производстве кальциево-сульфатных вяжущих
- •1.3.4.1.1 Автоклавный способ производства α-полугидрата
- •1.3.4.1.2 Гипсоварочный котел для производства ß-полугидрата
- •1.3.4.1.3 Метод высокотемпературного обжига гипса (многофазового гипса) на колосниковой решетке
- •1.3.4.2 Свойства способных к затвердеванию сульфатов кальция
- •1.3.5 Гидратация CaSo4-вяжущих
- •1.3.5.2 Природный -, уусдг - и химический ангидрит
- •1.3.5.3 Свойства обработанных гипсовых строительных материалов
- •1.3.5.4 Другие области применения
- •1.3.5.5 Нормы, химический анализ и фазовый анализ
- •1.3.5.6 Требования гост 125-79 к качеству строительного гипса
- •1.4 Другие неорганические вяжущие материалы
- •1.4.1 Глинозёмистый цемент
- •1.4.1.1 Производство
- •1.4.1.2 Химический и минералогический состав
- •1.4.1.3 Гидратация
- •1.4.1.4 Области применения
- •1.4.2 Магнезиальное вяжущее
- •1.4.3 Фосфатные вяжущие
- •1.4.3.1 Магнезиально-фосфатные вяжущие
- •1.4.3.2 Кальциево-фосфатные вяжущие
- •1.4.3.3 Алюминиево-фосфатные вяжущие
- •2 Строительно-химические добавки
- •2.1 Пластификаторы (разжижители), добавляемые при изготовлении бетона
- •2.2 Пластификаторы (разжижители), добавляемые в бетонные смеси
- •2.2.1 Поликонденсаты
- •2.2.1.1 Нафталинсульфоновая кислота-формальдегид-смола
- •2.2.1.2 Меламин-формальдегид-сульфитные смолы
- •2.2.2 Поликарбоксилаты
- •3 Системы стройматериалов
- •3.1 Бетон
- •3.1.1 Передвижные бетонные заводы
- •3.1.2 Бетон для сборных железобетонных элементов
- •3.1.3 Самоуплотняющийся бетон
- •3.2 Строительный раствор
- •3.2.1 Стяжка
- •3.2.2 Выравнивающие массы
- •3.2.3 Плиточный клей
- •3.2.4 Затирка и массы
- •3.2.5 Цементный раствор
- •3.2.6 Штукатурка
- •3.3 Гипсокартон
- •3.4 Краски и лаки
- •3.5 Цементирование глубинных скважин
- •4 Обзор (Заключение)
- •Литература
- •Химия строительных материалов
- •Химия строительных материалов учебник
4 Обзор (Заключение)
Примеры в главе 3 («Системы строительных материалов») хотят показать читателю то, что современное строительство при помощи строительной химии может стать более рациональным, экономичным, качественно лучшим и может заметно облегчить также работу строителей. За эти преимущества можно поблагодарить создание высокоразвитой и важной в плане товарооборота строительно-химической промышленности в Западной Европе, Северной Америке и Японии. В настоящее время строительно-химическая технология стремительно распространяется в Восточной Европе и Китае. Это относится особенно к таким областям, как сухие строительные смеси, растворы и высокопрочный бетон. Промышленные методы изготовления в этих странах заменяют традиционные, отличающиеся высокой долей ручного труда методы строительства.
Строительно-химические продукты и системы разрабатывались в прошлом на базе эмпирических исследований. Вследствие этого возникали определённые границы. Промышленность хорошо это поняла и всё больше обращается к фундаментальным научным исследованиям - либо в собственных исследовательских центрах, либо при помощи кооперации с вузами [251]. Понимание основных действующих механизмов должно помочь в достижении улучшенных строительных материалов и улучшенных свойств этих материалов. Двумя особенно успешными примерами значимости фундаментальных исследований являются внедрение ESEM-технологии для изучения гидратации цемента и изучение действующих механизмов у пластификаторов, о чём, между тем, появилось уже несколько сотен публикаций.
Несмотря на достигнутый высокий уровень, строительно-химическая промышленность продолжает свои, нацеленные на будущее, разработки. Сегодня можно отметить следующие основные пункты и тенденции в технологии:
Более надёжные системы строительных материалов и добавок
Снижающаяся квалификация строителей на местах, с одной стороны, и, становящееся всё большим расхождение в вяжущих материалах (например, из-за перехода от региональных к глобальным рынкам), с другой стороны, требуют добавок с гораздо лучшей совместимостью и надёжностью в практическом применении. Необходимо, чтобы системы строительных материалов с такими добавками и их использование в строительстве могли быть успешно освоены соответствующими специалистами.
Биополимеры
Усиленное использование биополимеров, изготовленных из растительного сырья во многих странах рассматривается как долгосрочный вклад в строительство. В некоторых областях применения (например, цементирование глубинных нефтяных и газовых скважин при морском бурении) требуются и уже частично предлагаются промышленностью биологически разлагаемые добавки [252].
Эмиссии и климатические условия внутри помещений
Прежний опыт с защитными средствами для древесных материалов побудил как промышленность, так и общественность, придавать этой теме большое значение. Современные разработки осуществляются сегодня повсеместно с учётом здравоохранительных и внутрижилищных климатических аспектов. Примером собственной инициативы промышленности в этой области является введённая в 1997 году Обществом «Эмиссионно контролируемые укладочные материалы» EMICODE-система [253]. Слабоэмиссионные клеящие вещества, которые содержатся в паркетных, ковровых и минеральных шпаклёвочных массах могут быть отмечены как малотоксичные с помощью официально выполняемых замеров.
Новые свойства материалов, полученных с помощью нано-технологий
Промышленность возлагает большие надежды на нано-технологии. В июне 2003г. в Пасли под Глазго впервые состоялся организованный «Шотландским Центром нано-технологий в конструкционных материалах» форум на тему «Нано-технологии в конструкциях» [254]. Ожидается квантовый прыжок в свойства материалов в системах минеральных строительных материалов благодаря наномодифицированным структурам, например, с помощью полимерных добавок, влияющих на рост кристаллов. Другие разработки нацелены на наноструктурированные и, по мере надобности, гидрофобизированные поверхности с эффектом самоочищения (так называемый Лотус-эффект). Примерами актуальных, уже представленных на рынке технологий являются самоочищающаяся черепица [255], фасадная краска [256] и облицовочная плитка. Для двух, названных последними применений интенсивно исследуются также использование рутила (TiO2) для протокаталитической оксидации органических пыли и грязи, плесени и бактерий [257, 258].
Технологическое развитие строительно-химических систем ещё далеко от своего достижения наивысшего пункта. Сведение воедино технологий вяжущих материалов, добавок строительных материалов, с одной стороны, и, с другой стороны, характерный для строительной химии междисциплинарный подход, который сводит вместе химию, минералогию, физику, технологию и др. области, позволяет ожидать новых важнейших инноваций.
