- •Isbn 978-9965-876-43-1
- •Isbn 978-9965-876-43-1
- •Содержание
- •Введение
- •1 Неорганические вяжущие вещества
- •1.1 Цемент
- •1.1.1 История
- •1.1.2 Экономика
- •1.1.3 Определение клинкера, цемента и добавок, вводимых при помоле
- •1.1.4 Состав сырьевой муки
- •1.1.5 Портландцементный клинкер
- •1.1.5.1 Номенклатура фаз клинкера
- •1.1.5.2 Алит
- •1.1.5.3 Белит
- •1.1.5.4 Фазы алюмината
- •1.1.5.5 Фаза феррита
- •1.1.5.6 Другие фазы клинкера
- •1.1.5.7 Состав и место происхождения
- •1.1.6 Анализ сырьевой муки, клинкера и цемента
- •1.1.7 Производство цемента
- •1.1.7.1 Сырье и топливо
- •1.1.7.1.1 Сырьевые материалы
- •1.1.7.1.2 Отходы
- •1.1.7.1.3 Добыча, переработка сырья, помол сырьевой муки и гомогенизация
- •1.1.7.2 Процесс обжига цементного клинкера
- •1.1.7.2.1 Процессы обжига
- •1.1.7.2.2. Топливо
- •1.1.7.2.3. Помол цемента
- •1.1.7.2.4. Тонкость помола и гранулометрический (зерновой) состав цемента
- •1.1.7.3. Хранение, упаковка, отгрузка цемента потребителю
- •1.1.8. Компоненты стандартного цемента
- •1.1.8.1. Основные составляющие портландцементного клинкера (k)
- •1.1.8.2 Мелкие составляющие
- •1.1.8.3 Сульфат кальция
- •1.1.8.4 Добавки к цементам
- •1.1.9 Цемент в соответствии со стандартом
- •1.1.9.1. Физические и химические свойства цементов по европейскому стандарту
- •1.1.9.2 Цементы со специальными свойствами
- •1.1.9.3 Тампонажный цемент
- •1.1.10 Гидратация
- •1.1.10.1 Реакция силикатов (c3s, c2s)
- •1.1.10.2 Реакции гидратации алюмината (c3a)
- •1.1.10.3 Гидратация феррита (c4af)
- •1. Модель Тейлора
- •2. Модель Старка
- •1.1.10.4 Гидратация цементов
- •1.1.10.5 Реакции вторичных составляющих
- •1.1.10.6 Гидратация цемента содержащего гранулированный шлак
- •1.1.10.7 Реакции пуццолановых материалов
- •1.1.10.8 Замедление затвердевания
- •1.1.11 Структура цементного камня
- •1.2 Строительная известь
- •1.2.1 Историческое и экономическое положение
- •1.2.2 Месторождения сырья
- •1.2.3 Производство извести
- •1.2.3.1 Добыча и переработка известняка
- •1.2.3.2 Обжиг извести
- •1.2.3.2.1 Шахтная печь на коксовом (угольном) и газовом топливе
- •1.2.3.2.2 Вращающаяся трубчатая печь
- •1.2.3.2.3 Противоточная регенеративная печь (ggr-печь)
- •1.2.3.2.4 Шахтная кольцевая печь
- •1.2.3.3 Помол и отгрузка обожженной извести
- •1.2.3.4 Гашение извести
- •1.2.4 Применение известковых продуктов
- •1.2.5 Требования гост 9179–79 к строительной извести
- •1.3 Гипс
- •1.3.1 История и экономика
- •1.3.2 Физико-химические основы гипсовых вяжущих
- •1.3.2.1 Фазы в системе CaSo4 - h2o
- •1.3.2.2 Кристаллические структуры, двойные соли, смешанные кристаллы
- •1.3.3 Месторождения и сырьё
- •1.3.3.1 Природный гипс, природный ангидрит
- •1.3.3.2 Химический гипс
- •1.3.3.3 Уддг-гипс
- •1.3.4 Производство кальциево-сульфатных вяжущих
- •1.3.4.1 Технологические процессы при производстве кальциево-сульфатных вяжущих
- •1.3.4.1.1 Автоклавный способ производства α-полугидрата
- •1.3.4.1.2 Гипсоварочный котел для производства ß-полугидрата
- •1.3.4.1.3 Метод высокотемпературного обжига гипса (многофазового гипса) на колосниковой решетке
- •1.3.4.2 Свойства способных к затвердеванию сульфатов кальция
- •1.3.5 Гидратация CaSo4-вяжущих
- •1.3.5.2 Природный -, уусдг - и химический ангидрит
- •1.3.5.3 Свойства обработанных гипсовых строительных материалов
- •1.3.5.4 Другие области применения
- •1.3.5.5 Нормы, химический анализ и фазовый анализ
- •1.3.5.6 Требования гост 125-79 к качеству строительного гипса
- •1.4 Другие неорганические вяжущие материалы
- •1.4.1 Глинозёмистый цемент
- •1.4.1.1 Производство
- •1.4.1.2 Химический и минералогический состав
- •1.4.1.3 Гидратация
- •1.4.1.4 Области применения
- •1.4.2 Магнезиальное вяжущее
- •1.4.3 Фосфатные вяжущие
- •1.4.3.1 Магнезиально-фосфатные вяжущие
- •1.4.3.2 Кальциево-фосфатные вяжущие
- •1.4.3.3 Алюминиево-фосфатные вяжущие
- •2 Строительно-химические добавки
- •2.1 Пластификаторы (разжижители), добавляемые при изготовлении бетона
- •2.2 Пластификаторы (разжижители), добавляемые в бетонные смеси
- •2.2.1 Поликонденсаты
- •2.2.1.1 Нафталинсульфоновая кислота-формальдегид-смола
- •2.2.1.2 Меламин-формальдегид-сульфитные смолы
- •2.2.2 Поликарбоксилаты
- •3 Системы стройматериалов
- •3.1 Бетон
- •3.1.1 Передвижные бетонные заводы
- •3.1.2 Бетон для сборных железобетонных элементов
- •3.1.3 Самоуплотняющийся бетон
- •3.2 Строительный раствор
- •3.2.1 Стяжка
- •3.2.2 Выравнивающие массы
- •3.2.3 Плиточный клей
- •3.2.4 Затирка и массы
- •3.2.5 Цементный раствор
- •3.2.6 Штукатурка
- •3.3 Гипсокартон
- •3.4 Краски и лаки
- •3.5 Цементирование глубинных скважин
- •4 Обзор (Заключение)
- •Литература
- •Химия строительных материалов
- •Химия строительных материалов учебник
1.4.1.3 Гидратация
Гидратация глинозёмистого цемента сильно зависима от температуры. В важнейшей фазе в глинозёмистом цементе, СА, в зависимости от температуры протекают следующие реакции:
CA+10H
CAH10
Уравнение
36
2CA+11H
C2AH8
+ AH3
Уравнение
37
3CA+12H
C3AH6
+ 2AH3
Уравнение
38
Образующийся при некоторых реакциях аморфный Al(OH)3, кристаллизуется через какое-то время в гиббсит. Так как при гидратации глинозёмистого цемента образование гидроксида кальция не происходит, то изготовленные из глинозёмистого цемента строительные детали значительно устойчивее к воздействию сульфатов или других кислых вод. А сопротивляемость щелочным водам, в отличие от портландцемента, меньше.
Продукты гидратации САН10, С2АН8 и С4АН13 образуют метастабильные гексагональные пластинки, которые со временем из-за высвобождения АН3 или же СН преобразуются в стабильный кубический С3АН6. Возникающий благодаря фазовому преобразованию С3АН6 имеет более высокую плотность, чем метастабильные промежуточные продукты, благодаря чему пористость увеличивается, а прочность снижается. При гидратации глинозёмистого цемента, таким образом, это не ведёт к длительному сохранению прочности, как у портландцемента, а увеличение прочности происходит только до определённого момента времени, чтобы затем с преобразованием в термодинамически стабильную фазу С3АН6 снова уменьшиться. Это уменьшение в отношении максимальной прочности будет ещё более отчётливым, если будут выше отношение вода/цемент и температура хранения (см. рисунок 1.73). Это возможное уменьшение прочности в бетонах с глинозёмистым цементом во многих странах привело к запрету применения глинозёмистого цемента в железобетоне и строительных железобетонных конструкциях. Необходимый для преобразования метастабильной фазы в стабильный С3АН6 минимальное водоцементное отношение составляет примерно 0,35. Исследования показали, что водоцементное отношение 0,4 является наиболее подходящим пределом для того, чтобы избежать слишком сильные потери прочности в изготовленном с глинозёмистым цементом бетоне и тем самым обеспечить его надёжное использование также и в несущих строительных деталях. В качестве другой меры для обеспечения безопасности должна быть дополнительная обработка и использование только песка без щёлочерастворимых компонентов, так как они способствуют фазовым преобразованиям [33, 213].
Рисунок 1.73 - Динамика развития прочности при сжатии у бетона с глинозёмистым цементом (по [213]) слева: влияние температуры, хранения при 18 и 380 С; справа: влияние водоцементного отношения
1.4.1.4 Области применения
На основании очень хорошей устойчивости к воздействию воды, быстрого схватывания и практической полезности, в том числе и при высоких температурах, возникает множество областей применения глиноземистого цемента. Например:
бетон для канализационных трубопроводов, в частности в тёплых климатических зонах (повышенное образование биогенной серной кислоты);
бетонные строительные конструкции, подвергаемые сильным абразивным нагрузкам (например, системы трубопроводов на гидроэлектростанциях, канализационные и проходящие по камням водотоки);
огнеупорная футеровка печей при производстве стали, стекла и портландцементного клинкера;
строительно-химическое применение.
Последнюю область применения следует рассмотреть подробнее.
В строительной химии глинозёмистый цемент используется в качестве чистого вяжущего очень редко, но очень часто используется в смеси с портландцементом или СаSO4 (в виде ангидрита, полугидрата или дигидрата) или в смеси с обоими вяжущими [214].
Основанием для такого применения этих вяжущих является ускоренный процесс схватывания. По рисунку 1.74 видно, что время затвердевания портландцемента может быть значительно сокращено путём добавления глинозёмистого цемента. Начиная с определённой величины содержания это приводит к «быстросхватывающему вяжущему», которое мгновенно затвердевает и не может далее перерабатываться.
Рисунок 1.74 - Время схватывания смесей из портландцемента и глинозёмистого цемента по [214]
В основе такого поведения лежит образование эттрингита из моноалюмината кальция и CaSO4·xH2O портландцемента. Так как из-за связи CaSO4 реакция С3А в цементе уже не может быть достаточно замедлена, то это приводит к описанному сокращению времени схватывания. Бинарные смеси из портландцемента и глинозёмистого цемента служат для производства быстросхватывающегося раствора для облицовочной плитки, выравнивающей или саморастекающейся массы, растворов для ремонта или заделывания водных промывов. Прочность этих смесей большей частью не очень высока. Повышение прочности возможно благодаря дополнительным средствам или добавкам CaSO4·xH2O [214, 215].
Другой технологически важной системой являются смеси из глинозёмистого цемента и CaSO4, образующие эттрингит. При их гидратации эттрингит возникает по следующей реакции:
3CA + 3CsHx + (32+y-x)H → C3A·3Cs·32H+2Hy Уравнение 39
Наряду с эттрингитом образуются продукты гидратации глинозёмистого цемента, которые часто аморфны. С помощью целенаправленного подбора состава вяжущего и дополнительных средств (добавок) процессом схватывания и затвердевания можно управлять. Однако большим преимуществом данной системы является то, что для «компенсации усадки» портландцемента может быть использовано связанное с образованием эттрингита расширение. Благодаря этому можно избежать образования трещин во время процесса схватывания [216]. По этому принципу цементная расплывающаяся смазка, при которой химические и физические усадки (при высыхании) могут привести к вогнутому выпучиванию, путём целенаправленной добавки глинозёмистого цемента и CaSO4 может быть сбалансирована для такого поведения усадки и набухаемости, при котором никаких серьёзных изменений формы изделий происходить не будет.
Другим преимуществом данной рецептуры является способность эттрингита связывать большое количество воды (содержание воды эттрингита = 47 вес. %). Это примерно на 50% больше воды, чем связывается при образовании C-S-H-фаз во время гидратации портландцемента. Так как преобразование глинозёмистого цемента и CaSO4 в эттрингит при гидратации портландцемента протекает значительно быстрее, чем образование C-S-H-фаз, то связывание воды не только очень высокое, но и очень быстрое. Эти свойства имеют большое значение, например, в массах для выравнивания пола. Благодаря высокому и быстрому связыванию воды могут затворяться системы, базирующиеся на глинозёмистом цементе и гипсе с высоким водоцементным отношением, что очень сильно облегчает получение равномерно ровной поверхности пола. На затвердевшую площадь можно ступать уже примерно через 2 часа, а частичная готовность к покрытию достигается менее чем за один день. По сравнению с системами на базе портландцемента это ведёт к значительному выигрышу по времени, что оправдывает более высокую стоимость.
