- •Isbn 978-9965-876-43-1
- •Isbn 978-9965-876-43-1
- •Содержание
- •Введение
- •1 Неорганические вяжущие вещества
- •1.1 Цемент
- •1.1.1 История
- •1.1.2 Экономика
- •1.1.3 Определение клинкера, цемента и добавок, вводимых при помоле
- •1.1.4 Состав сырьевой муки
- •1.1.5 Портландцементный клинкер
- •1.1.5.1 Номенклатура фаз клинкера
- •1.1.5.2 Алит
- •1.1.5.3 Белит
- •1.1.5.4 Фазы алюмината
- •1.1.5.5 Фаза феррита
- •1.1.5.6 Другие фазы клинкера
- •1.1.5.7 Состав и место происхождения
- •1.1.6 Анализ сырьевой муки, клинкера и цемента
- •1.1.7 Производство цемента
- •1.1.7.1 Сырье и топливо
- •1.1.7.1.1 Сырьевые материалы
- •1.1.7.1.2 Отходы
- •1.1.7.1.3 Добыча, переработка сырья, помол сырьевой муки и гомогенизация
- •1.1.7.2 Процесс обжига цементного клинкера
- •1.1.7.2.1 Процессы обжига
- •1.1.7.2.2. Топливо
- •1.1.7.2.3. Помол цемента
- •1.1.7.2.4. Тонкость помола и гранулометрический (зерновой) состав цемента
- •1.1.7.3. Хранение, упаковка, отгрузка цемента потребителю
- •1.1.8. Компоненты стандартного цемента
- •1.1.8.1. Основные составляющие портландцементного клинкера (k)
- •1.1.8.2 Мелкие составляющие
- •1.1.8.3 Сульфат кальция
- •1.1.8.4 Добавки к цементам
- •1.1.9 Цемент в соответствии со стандартом
- •1.1.9.1. Физические и химические свойства цементов по европейскому стандарту
- •1.1.9.2 Цементы со специальными свойствами
- •1.1.9.3 Тампонажный цемент
- •1.1.10 Гидратация
- •1.1.10.1 Реакция силикатов (c3s, c2s)
- •1.1.10.2 Реакции гидратации алюмината (c3a)
- •1.1.10.3 Гидратация феррита (c4af)
- •1. Модель Тейлора
- •2. Модель Старка
- •1.1.10.4 Гидратация цементов
- •1.1.10.5 Реакции вторичных составляющих
- •1.1.10.6 Гидратация цемента содержащего гранулированный шлак
- •1.1.10.7 Реакции пуццолановых материалов
- •1.1.10.8 Замедление затвердевания
- •1.1.11 Структура цементного камня
- •1.2 Строительная известь
- •1.2.1 Историческое и экономическое положение
- •1.2.2 Месторождения сырья
- •1.2.3 Производство извести
- •1.2.3.1 Добыча и переработка известняка
- •1.2.3.2 Обжиг извести
- •1.2.3.2.1 Шахтная печь на коксовом (угольном) и газовом топливе
- •1.2.3.2.2 Вращающаяся трубчатая печь
- •1.2.3.2.3 Противоточная регенеративная печь (ggr-печь)
- •1.2.3.2.4 Шахтная кольцевая печь
- •1.2.3.3 Помол и отгрузка обожженной извести
- •1.2.3.4 Гашение извести
- •1.2.4 Применение известковых продуктов
- •1.2.5 Требования гост 9179–79 к строительной извести
- •1.3 Гипс
- •1.3.1 История и экономика
- •1.3.2 Физико-химические основы гипсовых вяжущих
- •1.3.2.1 Фазы в системе CaSo4 - h2o
- •1.3.2.2 Кристаллические структуры, двойные соли, смешанные кристаллы
- •1.3.3 Месторождения и сырьё
- •1.3.3.1 Природный гипс, природный ангидрит
- •1.3.3.2 Химический гипс
- •1.3.3.3 Уддг-гипс
- •1.3.4 Производство кальциево-сульфатных вяжущих
- •1.3.4.1 Технологические процессы при производстве кальциево-сульфатных вяжущих
- •1.3.4.1.1 Автоклавный способ производства α-полугидрата
- •1.3.4.1.2 Гипсоварочный котел для производства ß-полугидрата
- •1.3.4.1.3 Метод высокотемпературного обжига гипса (многофазового гипса) на колосниковой решетке
- •1.3.4.2 Свойства способных к затвердеванию сульфатов кальция
- •1.3.5 Гидратация CaSo4-вяжущих
- •1.3.5.2 Природный -, уусдг - и химический ангидрит
- •1.3.5.3 Свойства обработанных гипсовых строительных материалов
- •1.3.5.4 Другие области применения
- •1.3.5.5 Нормы, химический анализ и фазовый анализ
- •1.3.5.6 Требования гост 125-79 к качеству строительного гипса
- •1.4 Другие неорганические вяжущие материалы
- •1.4.1 Глинозёмистый цемент
- •1.4.1.1 Производство
- •1.4.1.2 Химический и минералогический состав
- •1.4.1.3 Гидратация
- •1.4.1.4 Области применения
- •1.4.2 Магнезиальное вяжущее
- •1.4.3 Фосфатные вяжущие
- •1.4.3.1 Магнезиально-фосфатные вяжущие
- •1.4.3.2 Кальциево-фосфатные вяжущие
- •1.4.3.3 Алюминиево-фосфатные вяжущие
- •2 Строительно-химические добавки
- •2.1 Пластификаторы (разжижители), добавляемые при изготовлении бетона
- •2.2 Пластификаторы (разжижители), добавляемые в бетонные смеси
- •2.2.1 Поликонденсаты
- •2.2.1.1 Нафталинсульфоновая кислота-формальдегид-смола
- •2.2.1.2 Меламин-формальдегид-сульфитные смолы
- •2.2.2 Поликарбоксилаты
- •3 Системы стройматериалов
- •3.1 Бетон
- •3.1.1 Передвижные бетонные заводы
- •3.1.2 Бетон для сборных железобетонных элементов
- •3.1.3 Самоуплотняющийся бетон
- •3.2 Строительный раствор
- •3.2.1 Стяжка
- •3.2.2 Выравнивающие массы
- •3.2.3 Плиточный клей
- •3.2.4 Затирка и массы
- •3.2.5 Цементный раствор
- •3.2.6 Штукатурка
- •3.3 Гипсокартон
- •3.4 Краски и лаки
- •3.5 Цементирование глубинных скважин
- •4 Обзор (Заключение)
- •Литература
- •Химия строительных материалов
- •Химия строительных материалов учебник
1.3 Гипс
1.3.1 История и экономика
Название «гипс» происходит от его греческого обозначения “Gypsos”. В немецком языковом обиходе гипсом называют как затвердевший гипс (например, гипсовый камень), так и имеющие в составе меньшее количество воды, ещё способные к реакции CaSO4-вяжущие (например, полугидраты), что иногда приводит к заблуждению. В английском же языке есть ясное различие между “gypsum” - гипсовый камень, и “plaster” - вяжущее.
Гипс является одним из старейших минеральных вяжущих в истории человечества. О его применении было известно ещё во времена неолита и в эпоху античности у народов Малой Азии. Старейшим надёжным доказательством применения гипса в качестве строительного материала считается находка из города Чатал-Хююк в Малой Азии, которая относится к 9000 г. до н.э. Другие находки обнаружены в Израиле (7000 г. до н.э.), есть находки из времён строительства пирамиды Шефрен (ок. 2000 г. до н.э.), где использовался раствор из гипса и извести [7, 169]. Через Крету применение строительного материала гипс попало в Грецию и к римлянам, которые расширили знания о его изготовлении и применении и донесли их до областей Центральной и Северной Европы. После отступления римлян эти знания были утрачены. И только в 11 веке они были вновь найдены через монастыри. Путём примешивания других материалов, таких как конский волос и солома, были получены улучшенные строительные материалы. Огнезащитное действие гипса было обнаружено после крупного пожара в Лондоне в 1666 году и сделало его в 17 веке наиболее часто употребляющимся строительным материалом [7, 169]. В Германии гипс употреблялся ещё раньше как кирпич, гипсовая штукатурка, «гипсобетон» или в качестве раствора для кладки и штукатурки. С вхождением в обиход искусственного мрамора из гипса строительный материал гипс во времена Барокко и Рококо достиг своего апогея [170]. Несмотря на слабую устойчивость к воде гипс иногда использовался для внешней отделки, что, например, доказывается находками в Гарце и Тюрингии. При этом часто использовались смеси из гипса и извести [171, 172].
Современное производство гипса в мире составляет около 150 млн. тонн, при этом крупнейшим потребителем с объемом около 40% является цементная промышленность. В таблице 1.25 приведены важнейшие страны-производители гипса.
Таблица 1.25 - Годовое производство гипса, млн. т
Страна |
Производство гипса, млн.т |
Страна |
Производство гипса, млн.т |
США |
50 |
Англия |
10 |
Германия |
15 |
Испания |
8 |
Франция |
12 |
Другие |
45 |
Япония |
10 |
Всего |
150 |
По данным Федерального Союза гипсовой промышленности в 2000 году общее потребление гипса в ФРГ составляло ок. 8,52 млн. т, из них на гипсовую промышленность приходилось 5,72 млн. т, на цементную промышленность 1,75 млн. т и на прочее использование - 1,05 млн. т. Таблица 1.26 даёт обзор производства гипсовой промышленности, поделённого на области применения.
Таблица 1.26 - Использование гипса (без цемента) в Германии [173]
Год |
Строительный гипс1) |
Строительные элементы2) |
Гипсокартонные плиты3) |
1960 |
871 |
- |
- |
1965 |
842 |
108 |
- |
1970 |
1,175 |
215 |
53,425 |
1975 |
1,209 |
207 |
58,698 |
1980 |
1,937 |
260 |
84,801 |
1985 |
1,718 |
270 |
56,779 |
1990 |
1,998 |
402 |
93,220 |
1995 |
3,906 |
1,466 |
173,179 |
1996 |
3,739 |
2,594 |
184,484 |
1997 |
3,585 |
2,355 |
195,650 |
1998 |
3,408 |
2,093 |
255,954 |
1999 |
3,195 |
2,212 |
275,531 |
2000 |
2,678 |
2,155 |
234,624 |
1) в 1 000 т 2) в 1 000 т, с 1995г. строительные плиты кв.м. 3) в кв.м.
По данным Технического Объединения Эксплуатационников Крупных Электростанций в 2000 году было получено 5,97 млн. т гипса на установках с удалением серы из дымовых газов (УУСДГ), из них 1,53 млн. т поступило на временное хранение, а 3,94 млн. т на дальнейшую переработку. Сюда добавляется около 0,2 млн. т ангидрида из производства плавиковой (фтористоводородной) кислоты. Разница с общим потреблением покрывается природным гипсом/природным ангидридом. Таблица 1.27 показывает количество выхода гипса после установок с удалением серы из дымовых газов в некоторых странах Европы.
Оцениваемый мировой расход природного гипса и природного ангидрида составил в 1995 году около 95 млн. т. Из них в цементную промышленность поступило 55 млн. т (для 1 443 млрд. т цемента). Оставшиеся 40 млн. т природного гипса и ангидрида гипсовая промышленность переработала в строительные материалы. В будущем расход гипса может существенно повыситься, особенно в азиатских странах из-за расширения строительной деятельности. В 1995 году было использовано около 7-8 млн. т фосфогипса, большая часть из этого в Японии, которая не имеет собственных месторождений природного гипса. Использование гипса из производства диоксида титана и плавиковой кислоты < 1 млн. т в год [184].
Таблица 1.27 - Выход гипса после установок Фс удалением серы из дымовых газов в некоторых европейских странах в 2001 году [174]
Страна |
Производство гипса, тыс.т |
Страна |
Производство гипса, тыс.т |
Германия |
6530 |
Голландия |
320 |
Чехия |
1390 |
Дания |
300 |
Англия |
1130 |
Турция |
200 |
Польша |
1030 |
Австрия |
90 |
Испания |
600 |
Франция |
70 |
Италия |
540 |
Бельгия |
60 |
Венгрия |
400 |
Греция |
0 |
ФРГ использовало в 1980 году 6 млн. т природного гипса и природного ангидрида, из них 1,5 млн. т в цементной промышленности, 3,5 млн. т в гипсовой промышленности для производства гипсовых строительных материалов, 0,2 млн.т для изготовления промышленного гипса и 0,8 млн. т в качестве штрекового крепёжного материала в угледобывающей промышленности. Важнейшими гипсовыми строительными материалами являются гипсокартонные плиты (Северная Америка, Великобритания, Франция, Скандинавия, Бенилюкс, Япония и ФРГ), гипс для машинной штукатурки (Центральная Европа) и штукатурный гипс (Испания, Италия, Северная Африка, Ирак, Иран) [175]. Они будут рассмотрены подробнее позднее (глава 3.3).
