- •Isbn 978-9965-876-43-1
- •Isbn 978-9965-876-43-1
- •Содержание
- •Введение
- •1 Неорганические вяжущие вещества
- •1.1 Цемент
- •1.1.1 История
- •1.1.2 Экономика
- •1.1.3 Определение клинкера, цемента и добавок, вводимых при помоле
- •1.1.4 Состав сырьевой муки
- •1.1.5 Портландцементный клинкер
- •1.1.5.1 Номенклатура фаз клинкера
- •1.1.5.2 Алит
- •1.1.5.3 Белит
- •1.1.5.4 Фазы алюмината
- •1.1.5.5 Фаза феррита
- •1.1.5.6 Другие фазы клинкера
- •1.1.5.7 Состав и место происхождения
- •1.1.6 Анализ сырьевой муки, клинкера и цемента
- •1.1.7 Производство цемента
- •1.1.7.1 Сырье и топливо
- •1.1.7.1.1 Сырьевые материалы
- •1.1.7.1.2 Отходы
- •1.1.7.1.3 Добыча, переработка сырья, помол сырьевой муки и гомогенизация
- •1.1.7.2 Процесс обжига цементного клинкера
- •1.1.7.2.1 Процессы обжига
- •1.1.7.2.2. Топливо
- •1.1.7.2.3. Помол цемента
- •1.1.7.2.4. Тонкость помола и гранулометрический (зерновой) состав цемента
- •1.1.7.3. Хранение, упаковка, отгрузка цемента потребителю
- •1.1.8. Компоненты стандартного цемента
- •1.1.8.1. Основные составляющие портландцементного клинкера (k)
- •1.1.8.2 Мелкие составляющие
- •1.1.8.3 Сульфат кальция
- •1.1.8.4 Добавки к цементам
- •1.1.9 Цемент в соответствии со стандартом
- •1.1.9.1. Физические и химические свойства цементов по европейскому стандарту
- •1.1.9.2 Цементы со специальными свойствами
- •1.1.9.3 Тампонажный цемент
- •1.1.10 Гидратация
- •1.1.10.1 Реакция силикатов (c3s, c2s)
- •1.1.10.2 Реакции гидратации алюмината (c3a)
- •1.1.10.3 Гидратация феррита (c4af)
- •1. Модель Тейлора
- •2. Модель Старка
- •1.1.10.4 Гидратация цементов
- •1.1.10.5 Реакции вторичных составляющих
- •1.1.10.6 Гидратация цемента содержащего гранулированный шлак
- •1.1.10.7 Реакции пуццолановых материалов
- •1.1.10.8 Замедление затвердевания
- •1.1.11 Структура цементного камня
- •1.2 Строительная известь
- •1.2.1 Историческое и экономическое положение
- •1.2.2 Месторождения сырья
- •1.2.3 Производство извести
- •1.2.3.1 Добыча и переработка известняка
- •1.2.3.2 Обжиг извести
- •1.2.3.2.1 Шахтная печь на коксовом (угольном) и газовом топливе
- •1.2.3.2.2 Вращающаяся трубчатая печь
- •1.2.3.2.3 Противоточная регенеративная печь (ggr-печь)
- •1.2.3.2.4 Шахтная кольцевая печь
- •1.2.3.3 Помол и отгрузка обожженной извести
- •1.2.3.4 Гашение извести
- •1.2.4 Применение известковых продуктов
- •1.2.5 Требования гост 9179–79 к строительной извести
- •1.3 Гипс
- •1.3.1 История и экономика
- •1.3.2 Физико-химические основы гипсовых вяжущих
- •1.3.2.1 Фазы в системе CaSo4 - h2o
- •1.3.2.2 Кристаллические структуры, двойные соли, смешанные кристаллы
- •1.3.3 Месторождения и сырьё
- •1.3.3.1 Природный гипс, природный ангидрит
- •1.3.3.2 Химический гипс
- •1.3.3.3 Уддг-гипс
- •1.3.4 Производство кальциево-сульфатных вяжущих
- •1.3.4.1 Технологические процессы при производстве кальциево-сульфатных вяжущих
- •1.3.4.1.1 Автоклавный способ производства α-полугидрата
- •1.3.4.1.2 Гипсоварочный котел для производства ß-полугидрата
- •1.3.4.1.3 Метод высокотемпературного обжига гипса (многофазового гипса) на колосниковой решетке
- •1.3.4.2 Свойства способных к затвердеванию сульфатов кальция
- •1.3.5 Гидратация CaSo4-вяжущих
- •1.3.5.2 Природный -, уусдг - и химический ангидрит
- •1.3.5.3 Свойства обработанных гипсовых строительных материалов
- •1.3.5.4 Другие области применения
- •1.3.5.5 Нормы, химический анализ и фазовый анализ
- •1.3.5.6 Требования гост 125-79 к качеству строительного гипса
- •1.4 Другие неорганические вяжущие материалы
- •1.4.1 Глинозёмистый цемент
- •1.4.1.1 Производство
- •1.4.1.2 Химический и минералогический состав
- •1.4.1.3 Гидратация
- •1.4.1.4 Области применения
- •1.4.2 Магнезиальное вяжущее
- •1.4.3 Фосфатные вяжущие
- •1.4.3.1 Магнезиально-фосфатные вяжущие
- •1.4.3.2 Кальциево-фосфатные вяжущие
- •1.4.3.3 Алюминиево-фосфатные вяжущие
- •2 Строительно-химические добавки
- •2.1 Пластификаторы (разжижители), добавляемые при изготовлении бетона
- •2.2 Пластификаторы (разжижители), добавляемые в бетонные смеси
- •2.2.1 Поликонденсаты
- •2.2.1.1 Нафталинсульфоновая кислота-формальдегид-смола
- •2.2.1.2 Меламин-формальдегид-сульфитные смолы
- •2.2.2 Поликарбоксилаты
- •3 Системы стройматериалов
- •3.1 Бетон
- •3.1.1 Передвижные бетонные заводы
- •3.1.2 Бетон для сборных железобетонных элементов
- •3.1.3 Самоуплотняющийся бетон
- •3.2 Строительный раствор
- •3.2.1 Стяжка
- •3.2.2 Выравнивающие массы
- •3.2.3 Плиточный клей
- •3.2.4 Затирка и массы
- •3.2.5 Цементный раствор
- •3.2.6 Штукатурка
- •3.3 Гипсокартон
- •3.4 Краски и лаки
- •3.5 Цементирование глубинных скважин
- •4 Обзор (Заключение)
- •Литература
- •Химия строительных материалов
- •Химия строительных материалов учебник
1.1.10.5 Реакции вторичных составляющих
Цемент, как правило, содержит не только клинкерные фазы и гипс, но в разных количествах и несвязанную СаО ("свободная известь") и MgO. Эти минералы вступают в реакцию с водой с образованием соответствующих гидроксидов Ca(OH)2 или Mg(OH)2.
В качественно обожженном клинкере содержание СаО свободной должно быть не более 1-2 %. При нарушениях режима обжига, недостаточной температуре и продолжительности обжига, плохой гомогенизации сырьевой муки в клинкере может остаться неусвоенная СаО в повышенных количествах, например 3-5 %. Это бракованный клинкер. Согласно требований ГОСТ 10178-85 цемент должен выдержать испытание на равномерность изменения объема. Для этого из цементного теста нормальной густоты приготавливают лепешки диаметром около 7-8 см и через 20 часов твердения их кипятят в воде в течение 4 часов. Если лепешки не искривились, не рассыпались, не потрескались, не появилось сетки мелких трещин, то считается, что эта партия цемента качественная и ее можно отгружать потребителю.
Цементный клинкер обжигают при ~1450 оC, при такой температуре образуется так называемая «намертво обожженная известь». При обжиге обычной строительной извести (~1000-1100 оC) образуется СаО, которая гасится в течение нескольких минут или 20-30 минут. Свободная CaO в клинкере при гидратации цемента реагирует с водой очень медленно, образование Са(ОН)2 происходит только тогда, когда цемент или бетон уже затвердели. Таким образом, гидратация СаО свободной занимает много времени. При реакции СаО с водой образуется Са(ОН)2, объем которого приблизительно в 2 раза больше объема исходного СаО. Это приводит к расширению объема уже затвердевшего цементного камня в бетоне. В изделиях появляются трещины, конструкция может разрушиться. На рисунке 1.42 показана зависимость величины расширения цемента от содержания свободной СаО. При содержании СаО свободной 3-4 % расширение образцов составляет 2-5 мм/м, изделие расширится, растрескается и разрушится.
MgO может находиться в клинкере до 2,5 мас.% в виде твердого раствора в клинкерных фазах, остальное MgO образует свободный периклаз. Согласно требований ГОСТ 10178-85 содержание MgO в клинкере не должно превышать 5 %. Периклаз реагирует с водой очень медленно с образованием Mg(OH)2. В результате этой реакции происходит увеличение объема в 2,2 раза, так что это приводит к структурным повреждениям затвердевшего бетона или раствора ("магнезиальное расширение"). Пригодность цемента можно контролировать с помощью метода Коха или дилатометрического испытания.
Рисунок 1.42 - Зависимость величины расширения цемента от содержания свободной извести [33]
1.1.10.6 Гидратация цемента содержащего гранулированный шлак
Гранулированные шлаки это алюмосиликаты кальция с низким соотношением CaO/SiO2. Они состоят из тех же оксидов, что и портландцементный клинкер. В идеале, составные части гранулированных шлаков существуют не в кристаллической, а в аморфной форме. Стекловидной структуры достигают крайне быстрым охлаждением (закаливанием) расплавленного шлака при выплавке стали, чугуна, меди и др.
Стекловидные шлаковые размолотые частицы затвердевают при воздействия подходящих веществ (активизаторов) в гидравлической реакции и таким образом стимулируется образование прочных гидратных фаз. Этот "латентно-гидравлический" потенциал гранулированных доменных шлаков может быть вызван как щелочными, так и сульфатными катализаторами.
Щелочная форма импульса происходит в богатых гранулированным шлаком цементах первоначальной реакции силикатов кальция клинкера, при которой образуется Ca(OH)2. Это приводит к высокому рН раствора (12,5) вследствие диссоциации. В дальнейшем ходе реакции ионов калия и кальция, pH-значение порового раствора в короткое время поднимается выше 13. Это решение с высокой щелочностью действует как катализатор латентно-гидравлической реакции путем разъедания стекловидной структуры зерен шлакового песка и растворения поверхности зерна. Растворенные стекловидные компоненты (алюмосиликатов и силикатов кальция) затем доступны для реакции с Ca(OH)2 из-за гидратации клинкера или собственных реакций с участием CaO (уравнение 26).
Образуются преимущественно те же гидросиликаты, что и при гидратации портландцемента и клинкерных минералов, а именно гидраты силикатов кальция, которые приводят к дальнейшему уменьшению пористой структуры и увеличению прочности.
Богатые гранулированным шлаком цементы становятся беднее в результате увеличения SiO2 – Al2O3 и - доли CaO; кроме того, при гидратации силикатов кальция выделяется Ca(OH)2, частично потребляемый гранулированным доменным шлаком при образовании гидратных продуктов.
+СН, Н
Например: C2AS ---------→ C4AH13 + C-S-H Уравнение 26
+ Н
Например: C2S -----------→ C-S-H + CH Уравнение 27
+ Н
Исключение (редко): C2AS ----------→ C2ASH8 Уравнение 28
В связи с этим, важно иметь в виду, что Са(ОН)2, не обязательно должен участвовать в качестве реагирующего вещества в стехиометрическом смысле реакции, как ясно показано в уравнении 26. Уравнения 27 и 28 показывают, что реакции без участия Са(ОН)2 возможны.
Из-за низких уровней образования Ca(OH)2 в гидратных цементах доменной печи и на основе более бедных силикатов кальция СаО придают этому цементу по сравнению с бетоном из портландцемента повышенную устойчивость к химически агрессивным водам. Увеличение доли шлакового компонента приводит к уменьшению степени гидратации (рисунок 1.43) и увеличению сопротивляемости воздействию сульфатов. Однако поскольку гидратационные реакции протекают очень медленно, происходит увеличение прочности гранулированных шлаков в цементах, но как правило более медленно, чем в портландцементе [4, 33, 111, 140, 141, 142].
Длительность (продолжительность) гидратации, час
Длительность (продолжительность) гидратации, час
а) Скорость тепловыделения (верхний рис)
б) Суммарная теплота гидратации (кумулятивная кривая, ниже)
Рисунок 1.43 - Гидратация цементов с разным количеством шлака
