- •Магомедов и. А. Микропроцессорные системы. Теория и практика применения микроконтроллеров
- •Глава I. Микроконтроллеры
- •Глава III. Лабораторный практикум по микроконтроллерам семейства avr фирмы atmel
- •Предисловие
- •Введение
- •Глава I. Микроконтроллеры
- •1.1. Классификация микроконтроллеров
- •Области применения:
- •1.2. Направление развития элементной базы 8-разрядных микроконтроллеров
- •Контрольные вопросы
- •Глава II. Высокопроизводительные risc микроконтроллеры семейства avr
- •2.1. Микроконтроллер фирмы Atmel aTmega1281
- •2.2. Системное управление и сброс микроконтроллера
- •Контрольные вопросы
- •2.3. Программная модель микроконтроллера2
- •Регистр управления коэффициентом деления частоты кварцевого генератора - xtal Divide Control Register – xdiv.
- •Контрольные вопросы
- •Регистр управления коэффициентом деления частоты кварцевого генератора xdiv и его назначение. Пример использования регистра.
- •2.4 Подсистема памяти микроконтроллера
- •2.4.1 Статическое озу памяти данных
- •2.4.2 Система команд процессоров avr в семействе avr система команд у микроконтроллеров разных типов содержат от 89 до 130 команд.
- •2.4.3 Режимы адресации памяти программ и данных
- •2.4.5 Память данных на eeprom
- •2.4.6 Конфигурационные биты
- •2.4.7 Системная синхронизация и тактовые источники
- •Контрольные вопросы
- •2.5. Периферийные модули микроконтроллера aTmega128
- •2.5.1. Параллельные порты ввода-вывода
- •Порты в качестве универсального цифрового ввода-вывода. Все порты являются двунаправленными портами ввода-вывода с опциональными подтягивающими резисторами.
- •Описание регистров портов ввода-вывода.
- •Использование параллельных портов для управления жидкокристаллическим индикатором и
- •Контрольные вопросы
- •2.6. Подсистема таймера/счетчика микроконтроллера aTmega128
- •Описание регистров 8-разрядного таймера-счетчика 0.
- •Описание регистров 16-разрядных таймеров-счетчиков.
- •Контрольные вопросы
- •2.7. Подсистема ввода аналоговых сигналов мк
- •Контрольные вопросы
- •2.8. Аналоговый компаратор
- •Контрольные вопросы
- •2.9. Последовательный периферийный интерфейс – spi
- •Функционирование вывода ss.
- •2.9.1. Пример использования интерфейса spi микроконтроллера aTmega128
- •Контрольные вопросы
- •2.10. Универсальный синхронно - асинхронный последовательный приемопередатчик
- •Описание регистров усапп
- •2.10.1. Пример использования порта uart
- •Контрольные вопросы
- •2.11. Последовательный двухпроводной интерфейс twi
- •2.11.1. Формат посылки и передаваемых данных
- •2.11.2. Модуль twi микроконтроллера avr
- •Описание регистров twi.
- •2.11,3. Подключение схемы ds1307 к микроконтроллеру по интерфейсу twi
- •Глава III. Лабораторный практикум по микроконтроллерам семейства avr фирмы atmel6
- •Оформление отчета
- •Правила выполнение работы в лаборатории
- •Подготовки стенда к выполнению лабораторной работы
- •Лабораторная работа № 1. Разработка и отладка программ в среде avr Studio 4. Изучение системы команд микроконтроллеров семейства avr
- •Режимы работы отладчика
- •Индивидуальные задания к выполнению лабораторной работы №1
- •Контрольные вопросы к лабораторной работе №1
- •Лабораторная работа №2. Параллельные порты ввода/вывода микроконтроллера
- •Индивидуальные задания к выполнению лабораторной работы №2
- •Контрольные вопросы к лабораторной работе №2
- •Лабораторная работа №3 Подсистема ввода аналоговых сигналов микроконтроллера
- •Краткие теоретические сведения
- •Индивидуальные задания к выполнению лабораторной работы №3
- •Контрольные вопросы к лабораторной работе №3
- •Лабораторная работа №4.
- •Краткие теоретические сведения
- •Индивидуальные задания к выполнению лабораторной работы №4
- •Контрольные вопросы к лабораторной работе №4
- •Лабораторная работа №5 Изучение режимов работы Таймера/Счетчика
- •Краткие теоретические сведения
- •Индивидуальные задания к выполнению лабораторной работы №5
- •Контрольные вопросы к лабораторной работе № 5
- •Лабораторная работа №6 Последовательный периферийный интерфейс – spi
- •Краткие теоретические сведения
- •Индивидуальные задания к выполнению лабораторной работы №6
- •Контрольные вопросы к лабораторной работе № 6
- •Лабораторная работа №7 Подсистема памяти микроконтроллера.
- •Краткие теоретические сведения
- •Индивидуальные задания к выполнению лабораторной работе №7
- •Контрольные вопросы к лабораторной работе №7
- •Лабораторная работа №8 Последовательный двухпроводной интерфейс i2c (twi)
- •Краткие теоретические сведения
- •Индивидуальные задания к выполнению лабораторной работы №8
- •Контрольные вопросы к лабораторной работе №8
- •Список использованной литературы
- •Костин г.Ю. Микроконтроллеры фирмы Motorola. М.: ктц-мк, 1998.
- •Микроконтроллеры семейства avr
- •Приложение 2
- •Include - Вложить другой файл
- •Выражения
- •Набор инструкций
- •Приложение 3
- •Семейства avr
- •Приложение 4
Глава I. Микроконтроллеры
Микроконтроллер (MК) – программируемая микросхема, предназначенная для арифметико-логической обработки информации и управления техническими объектами и/или технологическими процессами. Типичный микроконтроллер сочетает в себе функции процессора и периферийных устройств, содержит ОЗУ и ПЗУ. Использование одной микросхемы, вместо целого набора, как в случае обычных процессоров, применяемых в персональных компьютерах, значительно снижает размеры, энергопотребление и стоимость устройств, построенных на базе микроконтроллеров.
Наиболее распространённым семейством микроконтроллеров являются 8-битные микроконтроллеры, широко используемые в промышленности. В то время как 8-разрядные процессоры общего назначения полностью вытеснены более производительными моделями, 8-разрядные микроконтроллеры продолжают широко использоваться. Это объясняется тем, что существует большое количество применений, в которых не требуется высокая производительность, но важна низкая стоимость.
Архитектура МК - результат эволюции архитектуры микропроцессоров и микропроцессорных систем, обусловленных стремлением существенно снизить их аппаратные затраты и стоимость. Как правило, эти цели достигаются как путем повышения уровня интеграции БИС, так и за счет поиска компромисса между стоимостью, аппаратными затратами и техническими характеристиками МК.
МК представляют собой приборы, конструктивно выполненные в виде одной БИС и включающие в себя все устройства, необходимые для реализации цифровой системы управления минимальной конфигурации: процессор, запоминающее устройство данных, запоминающее устройство команд, внутренний генератор тактовых сигналов, АЦП, интерфейсы и другие программируемые модули для связи с внешней средой. Использование МК в системах управления обеспечивает достижение исключительно высоких показателей эффективности при столь низкой стоимости (во многих применениях система может состоять только из одной БИС МК), что им, видимо, нет в ближайшем времени альтернативной элементной базы для построения управляющих и/или регулирующих систем. Специфическая организация ввода-вывода информации предопределяет область их применения в качестве специализированных вычислителей, включенных в контур управления объектом или процессом. Структурная организация, набор команд и аппаратно-программные средства ввода-вывода информации этих микросхем лучше всего приспособлены для решения задач управления и регулирования в приборах, устройствах и системах автоматики, а в последнее время и для решения задач обработки данных. Указанные выше соображения отражают технический уровень МК в настоящий момент.
Первые 8-разрядные микропроцессоры появились в 1971 г. Пять лет спустя, в 1976 г., был произведен первый 8-разрядный микроконтроллер (МК), который объединил в одном кристалле основные элементы микропроцессорной управляющей системы [1]: центральный процессор, постоянное запоминающее устройство, оперативное запоминающее устройство, порты ввода-вывода, таймеры. С тех пор микропроцессорная элементная база встраиваемых систем управления развивается высокими темпами:
-16 - и 32-разрядные МК с интегрированной на кристалл многофункциональной периферией стали обычным явлением;
-в последние годы бурно развиваются МК с процессором цифровой обработки сигналов (DSP) в качестве процессорного ядра.
-на очереди МК с командами обработки чисел с плавающей запятой и однокристальные программируемые логические МК.
Каждый из представителей, перечисленных выше групп, значительно превосходит по производительности скромного 8-разрядного предка. Однако высокоинтегрированные высокопроизводительные собратья не вытеснили 8-разрядные МК. Более того, 8-разрядные МК по количеству их модификаций значительно превосходят все остальные группы. И вот почему.
Во-первых, основная область применения 8-разрядных МК - устройства интеллектуального управления промышленной автоматики и бытовой аппаратуры. Специфика алгоритмов управления этих устройств не требует выполнения расчетов высокой точности в жестких условиях реального времени. Основная доля операций управления состоит в преобразовании логической информации. Следовательно, 8-разрядные МК могут с успехом реализовать эти задачи и не имеют тенденций к вытеснению МК с более высокой разрядностью обрабатываемого слова. Во-вторых, процессы глобальной информатизации настоятельно диктуют необходимость объединения в информационные сети даже очень простых устройств управления, например: торговых автоматов, уличного освещения и т.д. В результате 8-разрядные MK начинают применяться в тех областях, где до недавнего времени микропроцессорная техника не использовалась. В-третьих, степень алгоритмической культуры инженеров-разработчиков повысилась настолько, что они предпочитают применять простейшие МК вместо цифровых ИС средней степени интеграции. А низкая цена 8-разрядных МК этому только способствует. Все эти причины обусловливают возросшую потребность в 8-разрядных МК и, как следствие, постоянное расширение номенклатуры 8-разрядных МК такими известными компаниями, как Motorola, NEC, Microchip, Mitsubishi, Hitachi, Philips, Infineon, а также выход на рынок новых фирм-производителей 8-разрядных МК с очень интересной продукцией (Atmel, Scenix). Чтобы выстоять в конкурентной борьбе, производители стремятся предложить разработчикам такие МК, которые, с одной стороны, наиболее точно соответствуют требованиям разрабатываемого устройства, а с другой стороны, не являются функционально избыточными для этого устройства, что обеспечивает конкурентоспособность конечного изделия по стоимости продукции. Результатом этого стремления явилось великое множество моделей 8-разрядных МК.
На сегодняшний день существует более 200 модификаций микроконтроллеров, совместимых с i8051, выпускаемых двумя десятками компаний, и большое количество микроконтроллеров других типов. Популярностью у разработчиков пользуются 8-битные микроконтроллеры AVR фирмы Atmel и PIC фирмы Microchip Technology, шестнадцатибитные MSP430 фирмы TI, а также МК ARM, архитектуру, которых разрабатывает фирма ARM и продаёт лицензии другим фирмам для их производства.
И вся эта продукция в настоящее время стала доступной российскому разработчику и производителю.
